当前位置: 首页>>代码示例>>Python>>正文


Python AdaBoostRegressor.predict_proba方法代码示例

本文整理汇总了Python中sklearn.ensemble.AdaBoostRegressor.predict_proba方法的典型用法代码示例。如果您正苦于以下问题:Python AdaBoostRegressor.predict_proba方法的具体用法?Python AdaBoostRegressor.predict_proba怎么用?Python AdaBoostRegressor.predict_proba使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.ensemble.AdaBoostRegressor的用法示例。


在下文中一共展示了AdaBoostRegressor.predict_proba方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: return

# 需要导入模块: from sklearn.ensemble import AdaBoostRegressor [as 别名]
# 或者: from sklearn.ensemble.AdaBoostRegressor import predict_proba [as 别名]
        clf.fit(subTrainFeature, subTrainLabel)
        predictedTrainProb = clf.predict(trainFeature)
        predictedTestProb = clf.predict(testFeature)

        for item in predictedTrainProb:
            newTrainFeature_temp.append(item)
        for item in predictedTestProb:
            newTestFeature_temp.append(item)
        newTrainFeature.append(newTrainFeature_temp)
        newTestFeature.append(newTestFeature_temp)

    newTrainFeature = np.array(newTrainFeature).T
    newTestFeature = np.array(newTestFeature).T
    clf = linear_model.LogisticRegression(penalty='l2', dual=False, class_weight='auto')
    clf.fit(newTrainFeature, trainLabel)
    predictedLabel = clf.predict_proba(newTestFeature)
    return(predictedLabel[:, 0])

if(__name__ == "__main__"):
    trainFeature, trainLabel, testFeature, testPlatform = readFeature(5, 0.5, 10, 0.6, 15, 0.6, 5, 0.6, 1)
    '''
    selectFeature = SelectKBest(chi2, k = 55)
    selectFeature.fit(trainFeature, trainLabel)
    trainFeature_new = selectFeature.transform(trainFeature)
    testFeature_new = selectFeature.transform(testFeature)
    '''
    trainFeature_new = trainFeature[:, :]
    testFeature_new = testFeature[:, :]
    '''
    trainFeature_new = trainFeature[:, :26]
    testFeature_new = testFeature[:, :26]
开发者ID:Codelegant92,项目名称:RiskEvaluation,代码行数:33,代码来源:main_5020.py

示例2: GradientBoostingClassifier

# 需要导入模块: from sklearn.ensemble import AdaBoostRegressor [as 别名]
# 或者: from sklearn.ensemble.AdaBoostRegressor import predict_proba [as 别名]
pred = calibrated_clf.predict_proba(dtest)
sample = pd.read_csv('/Users/IkkiTanaka/Documents/KDDCup/sampleSubmission.csv',header=None)
preds = pd.concat([sample[0],pd.DataFrame(pred[:,1])],axis=1)
preds.to_csv('/Users/IkkiTanaka/Documents/KDDCup/pred/xgb/sk_GBM2.csv' ,header=None,index=False)





new_label = a.sort(0).iloc[(a.sort(0)[0]>0.01).values][1].values
clf = GradientBoostingClassifier(n_estimators=400,learning_rate=0.05,subsample=.96,max_depth=4,verbose=1,max_features=.96, random_state=None)
new_dtrain_sp = dtrain_sp[new_label]
new_dval = dval[new_label]
clf.fit(dtrain_sp, label_dtrain[0].values)
pred = clf.predict_proba(dval)
print("ROC score", metrics.roc_auc_score(label_dval[0].values, pred[:,1]))



#GaussianNB
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
clf.fit(dtrain_sp, label_dtrain[0].values)
pred = clf.predict_proba(dval)
print("ROC score", metrics.roc_auc_score(label_dval[0].values, pred[:,1]))


scaler = StandardScaler()
dtrain_sp = scaler.fit_transform(dtrain_sp)
dval = scaler.transform(dval)
开发者ID:ikki407,项目名称:KDDCUP2015,代码行数:32,代码来源:adaboost.py


注:本文中的sklearn.ensemble.AdaBoostRegressor.predict_proba方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。