当前位置: 首页>>代码示例>>Python>>正文


Python EllipticEnvelope.score方法代码示例

本文整理汇总了Python中sklearn.covariance.EllipticEnvelope.score方法的典型用法代码示例。如果您正苦于以下问题:Python EllipticEnvelope.score方法的具体用法?Python EllipticEnvelope.score怎么用?Python EllipticEnvelope.score使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.covariance.EllipticEnvelope的用法示例。


在下文中一共展示了EllipticEnvelope.score方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: anomaly_detection

# 需要导入模块: from sklearn.covariance import EllipticEnvelope [as 别名]
# 或者: from sklearn.covariance.EllipticEnvelope import score [as 别名]
def anomaly_detection(features, labels):
	# In this function, I try to use anomaly detection method (using mutivariate gaussian distribution) to identify poi-s
	non_pois = features[labels==0]
	pois = features[labels==1]
	print "non poi size", non_pois.shape, pois.shape, features.shape

	## Spliting data to train, test and cross validation set for anomaly detection

	split1 = produce_spliting_array(non_pois.shape[0], .75 )
	X_train = non_pois[split1==1]

	X_intermediate = non_pois[split1==0]

	print "size intermediate", X_intermediate.shape

	split2 = produce_spliting_array(X_intermediate.shape[0], .5 )

	X_test = X_intermediate[split2==1]
	label_test = np.zeros((X_test.shape[0],), dtype=np.int) - 1

	X_cv = X_intermediate[split2==0]
	label_cv = np.zeros((X_cv.shape[0],), dtype=np.int) - 1

	split3 = produce_spliting_array(pois.shape[0], .5 )
	X_test = np.vstack((X_test, pois[split3==1]))
	label_test = np.hstack((label_test, np.ones(sum(split3), dtype=np.int)))

	X_cv = np.vstack((X_cv, pois[split3==0]))
	label_cv = np.hstack((label_cv, np.ones(sum(split3==0), dtype=np.int)))



	print "size X_train", X_train.shape
	print "size test data", X_test.shape, label_test.shape
	print "size cv data", X_cv.shape, label_cv.shape
	print "size splits", len(split1), len(split2), len(split3)

	from sklearn.covariance import EllipticEnvelope
	detector = EllipticEnvelope(contamination=.85)
	detector.fit(X_train)
	pred_cv = detector.predict(X_cv)
	print pred_cv
	print label_cv
	print detector.score(X_cv, label_cv)
开发者ID:keymanesh,项目名称:Udacity--Intro-to-Data-Science,代码行数:46,代码来源:poi_id.py

示例2: test_outlier_detection

# 需要导入模块: from sklearn.covariance import EllipticEnvelope [as 别名]
# 或者: from sklearn.covariance.EllipticEnvelope import score [as 别名]
def test_outlier_detection():
    """

    """
    rnd = np.random.RandomState(0)
    X = rnd.randn(100, 10)
    clf = EllipticEnvelope(contamination=0.1)
    clf.fit(X)
    y_pred = clf.predict(X)

    assert_array_almost_equal(clf.decision_function(X, raw_mahalanobis=True), clf.mahalanobis(X - clf.location_))
    assert_almost_equal(clf.score(X, np.ones(100)), (100 - y_pred[y_pred == -1].size) / 100.0)
开发者ID:nellaivijay,项目名称:scikit-learn,代码行数:14,代码来源:test_robust_covariance.py

示例3: test_outlier_detection

# 需要导入模块: from sklearn.covariance import EllipticEnvelope [as 别名]
# 或者: from sklearn.covariance.EllipticEnvelope import score [as 别名]
def test_outlier_detection():
    rnd = np.random.RandomState(0)
    X = rnd.randn(100, 10)
    clf = EllipticEnvelope(contamination=0.1)
    assert_raises(NotFittedError, clf.predict, X)
    assert_raises(NotFittedError, clf.decision_function, X)
    clf.fit(X)
    y_pred = clf.predict(X)
    decision = clf.decision_function(X, raw_values=True)
    decision_transformed = clf.decision_function(X, raw_values=False)

    assert_array_almost_equal(decision, clf.mahalanobis(X))
    assert_array_almost_equal(clf.mahalanobis(X), clf.dist_)
    assert_almost_equal(clf.score(X, np.ones(100)), (100 - y_pred[y_pred == -1].size) / 100.0)
    assert sum(y_pred == -1) == sum(decision_transformed < 0)
开发者ID:BTY2684,项目名称:scikit-learn,代码行数:17,代码来源:test_robust_covariance.py

示例4: test_elliptic_envelope

# 需要导入模块: from sklearn.covariance import EllipticEnvelope [as 别名]
# 或者: from sklearn.covariance.EllipticEnvelope import score [as 别名]
def test_elliptic_envelope():
    rnd = np.random.RandomState(0)
    X = rnd.randn(100, 10)
    clf = EllipticEnvelope(contamination=0.1)
    assert_raises(NotFittedError, clf.predict, X)
    assert_raises(NotFittedError, clf.decision_function, X)
    clf.fit(X)
    y_pred = clf.predict(X)
    scores = clf.score_samples(X)
    decisions = clf.decision_function(X)

    assert_array_almost_equal(
        scores, -clf.mahalanobis(X))
    assert_array_almost_equal(clf.mahalanobis(X), clf.dist_)
    assert_almost_equal(clf.score(X, np.ones(100)),
                        (100 - y_pred[y_pred == -1].size) / 100.)
    assert(sum(y_pred == -1) == sum(decisions < 0))
开发者ID:AlexisMignon,项目名称:scikit-learn,代码行数:19,代码来源:test_elliptic_envelope.py


注:本文中的sklearn.covariance.EllipticEnvelope.score方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。