当前位置: 首页>>代码示例>>Python>>正文


Python MiniBatchKMeans.get_params方法代码示例

本文整理汇总了Python中sklearn.cluster.MiniBatchKMeans.get_params方法的典型用法代码示例。如果您正苦于以下问题:Python MiniBatchKMeans.get_params方法的具体用法?Python MiniBatchKMeans.get_params怎么用?Python MiniBatchKMeans.get_params使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.cluster.MiniBatchKMeans的用法示例。


在下文中一共展示了MiniBatchKMeans.get_params方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: applyKmeansMiniBatch

# 需要导入模块: from sklearn.cluster import MiniBatchKMeans [as 别名]
# 或者: from sklearn.cluster.MiniBatchKMeans import get_params [as 别名]
    def applyKmeansMiniBatch(self, number_of_clusters, country_specific_tweets):
        train, feature_names = self.extractFeatures(country_specific_tweets,False)
        
        name = "kmeans"
        if self.results:
            print("Performing dimensionality reduction using LSA")
        t0 = time()
        
        # Vectorizer results are normalized, which makes KMeans behave as
        # spherical k-means for better results. Since LSA/SVD results are
        # not normalized, we have to redo the normalization.
        
        #svd = TruncatedSVD(len(feature_names)-1)
        #normalizer = Normalizer(copy=False)
        #lsa = make_pipeline(svd, normalizer)
        #print(train.toarray())
        #train = lsa.fit_transform(train)
        
        if self.results:
            print("done in %fs" % (time() - t0))
    
        # explained_variance = svd.explained_variance_ratio_.sum()
        #print("Explained variance of the SVD step: {}%".format(int(explained_variance * 100)))
    
        if self.results:
            print("Clustering sparse data", end=" - ")                 
        t0 = time()
        
        km = MiniBatchKMeans(n_clusters=number_of_clusters, init='k-means++',init_size=1000,batch_size=1000, verbose=False)

        km.fit(train)
        if self.results:
            print("done in %0.3fs" % (time() - t0))

        parameters = km.get_params()
        labels = km.labels_
        
        # without SVD:
        order_centroids = km.cluster_centers_.argsort()[:, ::-1]
        
        # with SVD:
        #original_space_centroids = svd.inverse_transform(km.cluster_centers_)
        #order_centroids = original_space_centroids.argsort()[:, ::-1]
        
        top10 = self.printKMeansCluster(number_of_clusters, labels, order_centroids, feature_names)
        
        if self.results:
            print("Silhouette Coefficient {0}: {1}".format(name, metrics.silhouette_score(train, labels)))
        
        return name, parameters, top10, labels
开发者ID:michaelprummer,项目名称:datascience,代码行数:52,代码来源:clustering.py

示例2: __init__

# 需要导入模块: from sklearn.cluster import MiniBatchKMeans [as 别名]
# 或者: from sklearn.cluster.MiniBatchKMeans import get_params [as 别名]
class Kmeans:
  kmeans_batch_size = 45
  kmeans = None
  k = None
  def __init__(self, k=10, centers=None):
    self.k = k
    if(centers!=None):
      init_centers = centers
    else:
      init_centers = 'k-means++'

    self.kmeans = MiniBatchKMeans(init=init_centers, n_clusters=self.k, batch_size=self.kmeans_batch_size,
                       n_init=10, max_no_improvement=10, verbose=0)
  
  def fit(self, X):
    self.kmeans.fit(X)

  def partial_fit(self, X):
    self.kmeans.partial_fit(X)

  def predict(self, X):
    return self.kmeans.predict(X)

  def get_centers(self):
    return self.kmeans.cluster_centers_

  def set_centers(self, centers):
    self.kmeans.cluster_centers_ = centers    

  def predict_hist(self, X):
    labels = self.predict(X)
    bins = range(self.k)
    histogram = np.histogram(labels, bins=bins, density=True)[0]
    #histogram = histogram/X.shape[0]
    return histogram

  def get_params(self):
    return self.kmeans.get_params(deep=True)

  def set_params(self, kmeans_params):
    self.kmeans.set_params(**kmeans_params)
开发者ID:guidefreitas,项目名称:bag_of_visual_words,代码行数:43,代码来源:kmeans.py

示例3: train_codebook

# 需要导入模块: from sklearn.cluster import MiniBatchKMeans [as 别名]
# 或者: from sklearn.cluster.MiniBatchKMeans import get_params [as 别名]
def train_codebook(nclusters,normalized_descriptors):
    km = MiniBatchKMeans(nclusters)
    km.fit(normalized_descriptors)
    i = km.get_params() #carreguem els params del vector k
    nc = i['n_clusters'] #obtenim el numero de clusters des de la clase minibatchkmeans
    return km, nc
开发者ID:gdsa-upc,项目名称:Building-Recognizer,代码行数:8,代码来源:train_codebook.py

示例4: __init__

# 需要导入模块: from sklearn.cluster import MiniBatchKMeans [as 别名]
# 或者: from sklearn.cluster.MiniBatchKMeans import get_params [as 别名]
class FeatureGen:
	max_cat_records = 12499
	max_dog_records = 12499
	kmeans = None
	n_clusters = 0
	sift = None
	def __init__(self):
		#self.kmeans = KMeans(precompute_distances=False)
		self.kmeans = MiniBatchKMeans()
		self.sift = cv2.SIFT()
		self.n_clusters = self.kmeans.get_params()["n_clusters"]
		print self.n_clusters
	def prepareTrainTestTuples(self):
		file = open("train_tuples","w")
		for idx in range(0,self.max_cat_records):
			print "processing cat."+str(idx)+".jpg\n"
			img = cv2.imread('train/train/cat.'+str(idx)+'.jpg')
			gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
			kp = self.sift.detect(gray,None)
			tkp, td = self.sift.compute(gray, kp)
			temp_points = []
			for k in tkp:
				tuples = (int(math.ceil(k.pt[0])),int(math.ceil(k.pt[1])))
				temp_points.append(tuples)
			file.write(json.dumps(temp_points)+"\n")
		for idx in range(0,self.max_dog_records):
			print "processing dog."+str(idx)+".jpg\n"
			img = cv2.imread('train/train/dog.'+str(idx)+'.jpg')
			gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
			kp = self.sift.detect(gray,None)
			tkp, td = self.sift.compute(gray, kp)
			temp_points = []
			for k in tkp:
				tuples = (int(math.ceil(k.pt[0])),int(math.ceil(k.pt[1])))
				temp_points.append(tuples)
			file.write(json.dumps(temp_points)+"\n")
		file.close()
		'''
		file = open("test_tuples","w")
		for idx in range(1,12501):
			print "processing "+str(idx)+".jpg\n"
			img = cv2.imread('test1/test1/'+str(idx)+'.jpg')
			gray= cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
			kp = self.sift.detect(gray,None)
			tkp, td = self.sift.compute(gray, kp)
			temp_points = []
			for k in tkp:
				tuples = (int(math.ceil(k.pt[0])),int(math.ceil(k.pt[1])))
				temp_points.append(tuples)
			file.write(json.dumps(temp_points)+
		'''
	
	def getSIFTTrainFeatures(self):
		print "refined version"
		points = []
		loaded_feats = []
		file = open("train_tuples","r")
		lines = file.readlines()
		count=1
		for line in lines:
			if count >=10000 and count <=12500:
				print "continue"+str(count)
				count = count+1
				continue
			elif count == 24000:
				break
			print count
			feat_vals = json.loads(line)
			loaded_feats.append(feat_vals)
			for feat in feat_vals:
				points.append(feat)
			count = count+1
		print count
		self.kmeans = self.kmeans.fit(points)
		overall_feats = []
		count = 1
		for feat in loaded_feats:
			print "Record-->"+str(count)
			clusters = self.kmeans.predict(feat)
			print clusters
			feats = []
			for i in range(0,self.n_clusters):
				feats.append(0)
			if count <10000:
			#if count<self.max_cat_records:
				feats.append(0)
			else:
				feats.append(1)
			for num in clusters:
				feats[num] = feats[num]+1
			overall_feats.append(feats)
			count = count+1
		return overall_feats
	'''
	def getSIFTTrainFeatures(self):
		print "Enter train"
		points = []
		loaded_feats = []
		file = open("train_tuples","r")
		lines = file.readlines()
#.........这里部分代码省略.........
开发者ID:ram1988,项目名称:dog_cat,代码行数:103,代码来源:FeatureGen.py

示例5: len

# 需要导入模块: from sklearn.cluster import MiniBatchKMeans [as 别名]
# 或者: from sklearn.cluster.MiniBatchKMeans import get_params [as 别名]
        
        num_kps[img_idx] = len(kp)
        #stack descriptors for all training images
        if (img_idx == 0):
            des_tot = des
        else:
            des_tot = np.vstack((des_tot, des))            
    #end for
    
    #cluster images into a dictionary
    dictionary_size = 100
    kmeans = MiniBatchKMeans(n_clusters = dictionary_size, init = 'k-means++', batch_size = 5000, random_state = 0, verbose=0)
    tic = time()
    kmeans.fit(des_tot)
    toc = time()
    kmeans.get_params()
    print "K-means objective: %.2f" %kmeans.inertia_    
    print "elapsed time: %.4f sec" %(toc - tic)

    kmeans.cluster_centers_
    labels = kmeans.labels_    
    
    #PCA plot of kmeans_cluster centers
    pca = PCA(n_components=2)
    visual_words = pca.fit_transform(kmeans.cluster_centers_)

    plt.figure()
    plt.scatter(visual_words[:,0], visual_words[:,1], color='b', marker='o', lw = 2.0, label='Olivetti visual words')
    plt.title("Visual Words (PCA of cluster centers)")
    plt.xlabel("PC1")
    plt.ylabel("PC2")
开发者ID:vsmolyakov,项目名称:cv,代码行数:33,代码来源:visual_words.py


注:本文中的sklearn.cluster.MiniBatchKMeans.get_params方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。