当前位置: 首页>>代码示例>>Python>>正文


Python MiniBatchKMeans.cluster_centers_方法代码示例

本文整理汇总了Python中sklearn.cluster.MiniBatchKMeans.cluster_centers_方法的典型用法代码示例。如果您正苦于以下问题:Python MiniBatchKMeans.cluster_centers_方法的具体用法?Python MiniBatchKMeans.cluster_centers_怎么用?Python MiniBatchKMeans.cluster_centers_使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sklearn.cluster.MiniBatchKMeans的用法示例。


在下文中一共展示了MiniBatchKMeans.cluster_centers_方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: gen_km

# 需要导入模块: from sklearn.cluster import MiniBatchKMeans [as 别名]
# 或者: from sklearn.cluster.MiniBatchKMeans import cluster_centers_ [as 别名]
def gen_km(meigaras=[], cluster_centers_csv = ""):
    strsql = "select count(*) from trade.kabuka "
    if len(meigaras) > 0:
        strsql = strsql + kf.where_col_in(meigaras, "code")
    cnt = sql.exec_selsql(strsql, 0)
    
    km = MiniBatchKMeans(
                         n_clusters=np.sqrt(cnt*SAMPLE_RATE),
                         batch_size=1000)
    
    if cluster_centers_csv != "":
        path = "%s/%s" % (CSV_DIR, cluster_centers_csv)
        if os.path.exists(path):
            cluster_centers = f.csv2arr(path)
            km.cluster_centers_ = cluster_centers
    
    return km
开发者ID:toku463ne,项目名称:trade_advisor,代码行数:19,代码来源:classify.py

示例2: _gen_km

# 需要导入模块: from sklearn.cluster import MiniBatchKMeans [as 别名]
# 或者: from sklearn.cluster.MiniBatchKMeans import cluster_centers_ [as 别名]
    def _gen_km(self, bolverbose=False):
        strsql = "select count(*) from trade.kabuka "
        if len(self.meigaras) > 0:
            strsql = strsql + " where " + kf.where_col_in(self.meigaras, "code")
        cnt = sql.exec_selsql(strsql, 0)[0]

        path = "%s/%s" % (CSV_DIR, self.cluster_centers_csv)
        X = None
        if os.path.exists(path):
            X = np.array(f.csv2arr(path))

        if X is None:
            km = MiniBatchKMeans(n_clusters=int(np.sqrt(cnt * SAMPLE_RATE)), batch_size=1000, verbose=bolverbose)
        else:
            km = MiniBatchKMeans(
                n_clusters=int(np.sqrt(cnt * SAMPLE_RATE)), batch_size=1000, init=X, verbose=bolverbose
            )
        km.cluster_centers_ = X
        self.km = km
开发者ID:toku463ne,项目名称:trade_advisor,代码行数:21,代码来源:scikit_kmeans.py

示例3: cluster_to_words

# 需要导入模块: from sklearn.cluster import MiniBatchKMeans [as 别名]
# 或者: from sklearn.cluster.MiniBatchKMeans import cluster_centers_ [as 别名]
def cluster_to_words(features, config):

    # Create clustering estimator

    # KMEANS
#     estimator = KMeans(init='k-means++',
#                           n_clusters=config.SIFT.BoW.num_clusters,
#                           n_init=10, verbose=True, n_jobs=-2, tol=1e-3)


    # Mini batch KMEANS
    batch_size = config.SIFT.BoW.num_clusters * 10
    estimator = MiniBatchKMeans(init='k-means++',
                            n_clusters=config.SIFT.BoW.requested_num_clusters,
                            batch_size=batch_size,
                            tol=0.001,
                            init_size=10*config.SIFT.BoW.requested_num_clusters,
                            n_init = 10,
                            verbose=True)


    # normalize SIFT features
    # features = normalize_features(features)

    # Cluster features
    print "Clustering features into {} clusters".format(estimator.n_clusters)
    estimator.fit(features)

    # Drop duplicate clusters (usually empty clusters)
    clusters = pd.DataFrame(data=estimator.cluster_centers_)
    clusters.drop_duplicates(inplace=True)
    estimator.cluster_centers_ = np.array(clusters)
    estimator.n_clusters = clusters.shape[0]

    # Update config to show new number of clusters
    configuration.update_config(config, 
                                'SIFT.BoW.num_clusters', 
                                estimator.n_clusters)
#     config.SIFT.BoW.num_clusters = estimator.n_clusters
    

    return estimator
开发者ID:yairmov,项目名称:carUnderstanding,代码行数:44,代码来源:Bow.py


注:本文中的sklearn.cluster.MiniBatchKMeans.cluster_centers_方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。