本文整理汇总了Python中skbio.TreeNode.read方法的典型用法代码示例。如果您正苦于以下问题:Python TreeNode.read方法的具体用法?Python TreeNode.read怎么用?Python TreeNode.read使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类skbio.TreeNode
的用法示例。
在下文中一共展示了TreeNode.read方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_index_tree
# 需要导入模块: from skbio import TreeNode [as 别名]
# 或者: from skbio.TreeNode import read [as 别名]
def test_index_tree(self):
"""index_tree should produce correct index and node map"""
# test for first tree: contains singleton outgroup
t1 = TreeNode.read(StringIO(u'(((a,b),c),(d,e));'))
t2 = TreeNode.read(StringIO(u'(((a,b),(c,d)),(e,f));'))
t3 = TreeNode.read(StringIO(u'(((a,b,c),(d)),(e,f));'))
id_1, child_1 = t1.index_tree()
nodes_1 = [n.id for n in t1.traverse(self_before=False,
self_after=True)]
self.assertEqual(nodes_1, [0, 1, 2, 3, 6, 4, 5, 7, 8])
self.assertEqual(child_1, [(2, 0, 1), (6, 2, 3), (7, 4, 5), (8, 6, 7)])
# test for second tree: strictly bifurcating
id_2, child_2 = t2.index_tree()
nodes_2 = [n.id for n in t2.traverse(self_before=False,
self_after=True)]
self.assertEqual(nodes_2, [0, 1, 4, 2, 3, 5, 8, 6, 7, 9, 10])
self.assertEqual(child_2, [(4, 0, 1), (5, 2, 3), (8, 4, 5), (9, 6, 7),
(10, 8, 9)])
# test for third tree: contains trifurcation and single-child parent
id_3, child_3 = t3.index_tree()
nodes_3 = [n.id for n in t3.traverse(self_before=False,
self_after=True)]
self.assertEqual(nodes_3, [0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10])
self.assertEqual(child_3, [(4, 0, 2), (5, 3, 3), (8, 4, 5), (9, 6, 7),
(10, 8, 9)])
示例2: _main
# 需要导入模块: from skbio import TreeNode [as 别名]
# 或者: from skbio.TreeNode import read [as 别名]
def _main(gene_tree_fp, species_tree_fp, gene_msa_fa_fp, output_tree_fp, output_msa_phy_fp, method):
""" Reformat trees to input accepted by various HGT detection methods.
Species tree can be multifurcating, however will be converted to
bifurcating trees for software that require them. Leaf labels of
species tree and gene tree must match, however the label
SPECIES_GENE is acceptable for multiple genes in the gene
tree. Leaf labels must also be at most 10 characters long (for
PHYLIP manipulations).
"""
# add function to check where tree is multifurcating and the labeling
# is correct
gene_tree = TreeNode.read(gene_tree_fp, format="newick")
species_tree = TreeNode.read(species_tree_fp, format="newick")
if method == "ranger-dtl":
reformat_rangerdtl(gene_tree=gene_tree, species_tree=species_tree, output_tree_fp=output_tree_fp)
elif method == "trex":
reformat_trex(gene_tree=gene_tree, species_tree=species_tree, output_tree_fp=output_tree_fp)
elif method == "riata-hgt":
reformat_riatahgt(gene_tree=gene_tree, species_tree=species_tree, output_tree_fp=output_tree_fp)
elif method == "jane4":
reformat_jane4(gene_tree=gene_tree, species_tree=species_tree, output_tree_fp=output_tree_fp)
elif method == "tree-puzzle":
reformat_treepuzzle(
gene_tree=gene_tree,
species_tree=species_tree,
gene_msa_fa_fp=gene_msa_fa_fp,
output_tree_fp=output_tree_fp,
output_msa_phy_fp=output_msa_phy_fp,
)
示例3: test_biom_match_tips_intersect_columns
# 需要导入模块: from skbio import TreeNode [as 别名]
# 或者: from skbio.TreeNode import read [as 别名]
def test_biom_match_tips_intersect_columns(self):
# table has less columns than tree tips
table = Table(
np.array([[0, 0, 1],
[2, 3, 4],
[5, 5, 3],
[0, 0, 1]]).T,
['a', 'b', 'd'],
['s1', 's2', 's3', 's4'])
tree = TreeNode.read([u"(((a,b)f, c),d)r;"])
table = Table(
np.array([[0, 0, 1],
[2, 3, 4],
[5, 5, 3],
[0, 0, 1]]).T,
['a', 'b', 'd'],
['s1', 's2', 's3', 's4'])
exp_table = Table(
np.array([[1, 0, 0],
[4, 2, 3],
[3, 5, 5],
[1, 0, 0]]).T,
['d', 'a', 'b'],
['s1', 's2', 's3', 's4'])
exp_tree = TreeNode.read([u"(d,(a,b)f)r;"])
res_table, res_tree = match_tips(table, tree)
self.assertEqual(exp_table, res_table)
self.assertEqual(str(exp_tree), str(res_tree))
示例4: test_reformat_jane4
# 需要导入模块: from skbio import TreeNode [as 别名]
# 或者: from skbio.TreeNode import read [as 别名]
def test_reformat_jane4(self):
""" Test functionality of reformat_jane4()
"""
species_tree = TreeNode.read(self.species_tree_fp, format='newick')
gene_tree_1 = TreeNode.read(self.gene_tree_1_fp, format='newick')
output_tree_fp = join(self.working_dir, "joined_trees.nex")
reformat_jane4(gene_tree_1,
species_tree,
output_tree_fp)
reformat_tree_exp = [
"#NEXUS\n", "begin host;\n",
"tree host = "
"(((((((SE001,SE010),SE008),(SE006,SE009)),SE005),SE004),SE003),"
"(SE002,SE007));\n", "\n",
"endblock;\n", "begin parasite;\n",
"tree parasite = "
"(((((((SE001_01623,SE010_01623),SE008_01623),(SE006_01623,"
"SE009_01623)),SE005_01623),SE004_01623),SE003_01623),"
"((SE002_01623,SE007_01623),((((SE001_04123,SE010_04123),"
"SE008_04123),(SE006_04123,SE009_04123)),SE005_04123)));\n", "\n",
"endblock;\n",
"begin distribution;\n",
"Range SE010_01623:SE010, SE010_04123:SE010, SE009_01623:SE009, "
"SE009_04123:SE009, SE008_01623:SE008, SE008_04123:SE008, "
"SE007_01623:SE007, SE006_01623:SE006, SE006_04123:SE006, "
"SE005_01623:SE005, SE005_04123:SE005, SE004_01623:SE004, "
"SE003_01623:SE003, SE002_01623:SE002, SE001_01623:SE001, "
"SE001_04123:SE001;\n",
"endblock;\n"]
with open(output_tree_fp, 'r') as output_tree_f:
reformat_tree_act = output_tree_f.readlines()
self.assertListEqual(reformat_tree_exp, reformat_tree_act)
示例5: test_reformat_treepuzzle
# 需要导入模块: from skbio import TreeNode [as 别名]
# 或者: from skbio.TreeNode import read [as 别名]
def test_reformat_treepuzzle(self):
""" Test functionality of reformat_treepuzzle()
"""
species_tree = TreeNode.read(self.species_tree_fp, format='newick')
gene_tree_3 = TreeNode.read(self.gene_tree_3_fp, format='newick')
output_tree_fp = join(self.working_dir, "joined_trees.nwk")
output_msa_phy_fp = join(self.working_dir, "gene_tree_3.phy")
reformat_treepuzzle(gene_tree_3,
species_tree,
self.msa_fa_3_fp,
output_tree_fp,
output_msa_phy_fp)
reformat_tree_exp = [
"(((((((SE001:2.1494877,SE010:1.08661):3.7761166,SE008:"
"0.86305436):0.21024487,(SE006:0.56704221,SE009:0.5014676):"
"0.90294223):0.20542323,SE005:3.0992506):0.37145632,SE004:"
"1.8129133):0.72933621,SE003:1.737411):0.24447835,(SE002:"
"1.6606127,SE007:0.70000178):1.6331374);\n",
"(((((((SE001:2.1494876,SE010:2.1494876):"
"3.7761166,SE008:5.9256042):0.2102448,(SE006:"
"5.2329068,SE009:5.2329068):0.9029422):0.2054233,"
"SE005:6.3412723):0.3714563,SE004:6.7127286):"
"0.7293362,SE003:7.4420648):0.2444784,SE002:"
"7.6865432);\n"]
with open(output_tree_fp, 'r') as output_tree_f:
reformat_tree_act = output_tree_f.readlines()
self.assertListEqual(reformat_tree_exp, reformat_tree_act)
msa_fa = TabularMSA.read(output_msa_phy_fp, constructor=Protein)
labels_exp = [u'SE001', u'SE002', u'SE003', u'SE004', u'SE005',
u'SE006', u'SE008', u'SE009', u'SE010']
labels_act = list(msa_fa.index)
self.assertListEqual(labels_exp, labels_act)
示例6: test_majority_rule
# 需要导入模块: from skbio import TreeNode [as 别名]
# 或者: from skbio.TreeNode import read [as 别名]
def test_majority_rule(self):
trees = [
TreeNode.read(StringIO("(A,(B,(H,(D,(J,(((G,E),(F,I)),C))))));")),
TreeNode.read(StringIO("(A,(B,(D,((J,H),(((G,E),(F,I)),C)))));")),
TreeNode.read(StringIO("(A,(B,(D,(H,(J,(((G,E),(F,I)),C))))));")),
TreeNode.read(StringIO("(A,(B,(E,(G,((F,I),((J,(H,D)),C))))));")),
TreeNode.read(StringIO("(A,(B,(E,(G,((F,I),(((J,H),D),C))))));")),
TreeNode.read(StringIO("(A,(B,(E,((F,I),(G,((J,(H,D)),C))))));")),
TreeNode.read(StringIO("(A,(B,(E,((F,I),(G,(((J,H),D),C))))));")),
TreeNode.read(StringIO("(A,(B,(E,((G,(F,I)),((J,(H,D)),C)))));")),
TreeNode.read(StringIO("(A,(B,(E,((G,(F,I)),(((J,H),D),C)))));"))]
exp = TreeNode.read(StringIO("(((E,(G,(F,I),(C,(D,J,H)))),B),A);"))
obs = majority_rule(trees)
self.assertEqual(exp.compare_subsets(obs[0]), 0.0)
self.assertEqual(len(obs), 1)
tree = obs[0]
exp_supports = sorted([9.0, 9.0, 9.0, 6.0, 6.0, 6.0])
obs_supports = sorted([n.support for n in tree.non_tips()])
self.assertEqual(obs_supports, exp_supports)
obs = majority_rule(trees, weights=np.ones(len(trees)) * 2)
self.assertEqual(exp.compare_subsets(obs[0]), 0.0)
self.assertEqual(len(obs), 1)
tree = obs[0]
exp_supports = sorted([18.0, 18.0, 12.0, 18.0, 12.0, 12.0])
obs_supports = sorted([n.support for n in tree.non_tips()])
with self.assertRaises(ValueError):
majority_rule(trees, weights=[1, 2])
示例7: test_reformat_riatahgt
# 需要导入模块: from skbio import TreeNode [as 别名]
# 或者: from skbio.TreeNode import read [as 别名]
def test_reformat_riatahgt(self):
""" Test functionality of reformat_riatahgt()
"""
species_tree = TreeNode.read(self.species_tree_fp, format='newick')
gene_tree_1 = TreeNode.read(self.gene_tree_1_fp, format='newick')
output_tree_fp = join(self.working_dir, "joined_trees.nex")
reformat_riatahgt(gene_tree_1,
species_tree,
output_tree_fp)
reformat_tree_exp = [
"#NEXUS\n", "BEGIN TREES;\n",
"Tree speciesTree = "
"(((((((SE001:2.1494877,SE010:1.08661):3.7761166,SE008:"
"0.86305436):0.21024487,(SE006:0.56704221,SE009:0.5014676):"
"0.90294223):0.20542323,SE005:3.0992506):0.37145632,SE004:"
"1.8129133):0.72933621,SE003:1.737411):0.24447835,(SE002:"
"1.6606127,SE007:0.70000178):1.6331374):1.594016;\n",
"Tree geneTree = "
"(((((((SE001:2.1494876,SE010:2.1494876):"
"3.7761166,SE008:5.9256042):0.2102448,(SE006:"
"5.2329068,SE009:5.2329068):0.9029422):0.2054233,"
"SE005:6.3412723):0.3714563,SE004:6.7127286):"
"0.7293362,SE003:7.4420648):0.2444784,((SE002:"
"6.0534057,SE007:6.0534057):0.4589905,((((SE001:"
"2.1494876,SE010:2.1494876):3.7761166,SE008:"
"5.9256042):0.2102448,(SE006:5.2329068,SE009:"
"5.2329068):0.9029422):0.2054233,SE005:6.3412723):"
"0.1711239):1.174147):1.594016;\n",
"END;\n",
"BEGIN PHYLONET;\n",
"RIATAHGT speciesTree {geneTree};\n",
"END;\n"]
with open(output_tree_fp, 'r') as output_tree_f:
reformat_tree_act = output_tree_f.readlines()
self.assertListEqual(reformat_tree_exp, reformat_tree_act)
示例8: setUp
# 需要导入模块: from skbio import TreeNode [as 别名]
# 或者: from skbio.TreeNode import read [as 别名]
def setUp(self):
"""Prep the self"""
self.simple_t = TreeNode.read(StringIO(u"((a,b)i1,(c,d)i2)root;"))
nodes = dict([(x, TreeNode(x)) for x in "abcdefgh"])
nodes["a"].append(nodes["b"])
nodes["b"].append(nodes["c"])
nodes["c"].append(nodes["d"])
nodes["c"].append(nodes["e"])
nodes["c"].append(nodes["f"])
nodes["f"].append(nodes["g"])
nodes["a"].append(nodes["h"])
self.TreeNode = nodes
self.TreeRoot = nodes["a"]
def rev_f(items):
items.reverse()
def rotate_f(items):
tmp = items[-1]
items[1:] = items[:-1]
items[0] = tmp
self.rev_f = rev_f
self.rotate_f = rotate_f
self.complex_tree = TreeNode.read(StringIO(u"(((a,b)int1,(x,y,(w,z)int" "2,(c,d)int3)int4),(e,f)int" "5);"))
示例9: test_extend
# 需要导入模块: from skbio import TreeNode [as 别名]
# 或者: from skbio.TreeNode import read [as 别名]
def test_extend(self):
"""Extend a few nodes"""
second_tree = TreeNode.read(StringIO(u"(x1,y1)z1;"))
third_tree = TreeNode.read(StringIO(u"(x2,y2)z2;"))
first_tree = TreeNode.read(StringIO(u"(x1,y1)z1;"))
fourth_tree = TreeNode.read(StringIO(u"(x2,y2)z2;"))
self.simple_t.extend([second_tree, third_tree])
first_tree.extend(fourth_tree.children)
self.assertEqual(0, len(fourth_tree.children))
self.assertEqual(first_tree.children[0].name, "x1")
self.assertEqual(first_tree.children[1].name, "y1")
self.assertEqual(first_tree.children[2].name, "x2")
self.assertEqual(first_tree.children[3].name, "y2")
self.assertEqual(self.simple_t.children[0].name, "i1")
self.assertEqual(self.simple_t.children[1].name, "i2")
self.assertEqual(self.simple_t.children[2].name, "z1")
self.assertEqual(self.simple_t.children[3].name, "z2")
self.assertEqual(len(self.simple_t.children), 4)
self.assertEqual(self.simple_t.children[2].children[0].name, "x1")
self.assertEqual(self.simple_t.children[2].children[1].name, "y1")
self.assertEqual(self.simple_t.children[3].children[0].name, "x2")
self.assertEqual(self.simple_t.children[3].children[1].name, "y2")
self.assertIs(second_tree.parent, self.simple_t)
self.assertIs(third_tree.parent, self.simple_t)
示例10: test_validate_otu_ids_and_tree
# 需要导入模块: from skbio import TreeNode [as 别名]
# 或者: from skbio.TreeNode import read [as 别名]
def test_validate_otu_ids_and_tree(self):
# basic valid input
t = TreeNode.read(
StringIO(u"(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:" u"0.75,OTU5:0.75):1.25):0.0)root;")
)
counts = [1, 1, 1]
otu_ids = ["OTU1", "OTU2", "OTU3"]
self.assertTrue(_validate_otu_ids_and_tree(counts, otu_ids, t) is None)
# all tips observed
t = TreeNode.read(
StringIO(u"(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:" u"0.75,OTU5:0.75):1.25):0.0)root;")
)
counts = [1, 1, 1, 1, 1]
otu_ids = ["OTU1", "OTU2", "OTU3", "OTU4", "OTU5"]
self.assertTrue(_validate_otu_ids_and_tree(counts, otu_ids, t) is None)
# no tips observed
t = TreeNode.read(
StringIO(u"(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:" u"0.75,OTU5:0.75):1.25):0.0)root;")
)
counts = []
otu_ids = []
self.assertTrue(_validate_otu_ids_and_tree(counts, otu_ids, t) is None)
# all counts zero
t = TreeNode.read(
StringIO(u"(((((OTU1:0.5,OTU2:0.5):0.5,OTU3:1.0):1.0):0.0,(OTU4:" u"0.75,OTU5:0.75):1.25):0.0)root;")
)
counts = [0, 0, 0, 0, 0]
otu_ids = ["OTU1", "OTU2", "OTU3", "OTU4", "OTU5"]
self.assertTrue(_validate_otu_ids_and_tree(counts, otu_ids, t) is None)
示例11: test_tip_tip_distances_missing_length
# 需要导入模块: from skbio import TreeNode [as 别名]
# 或者: from skbio.TreeNode import read [as 别名]
def test_tip_tip_distances_missing_length(self):
t = TreeNode.read(io.StringIO("((a,b:6)c:4,(d,e:0)f);"))
exp_t = TreeNode.read(io.StringIO("((a:0,b:6)c:4,(d:0,e:0)f:0);"))
exp_t_dm = exp_t.tip_tip_distances()
t_dm = npt.assert_warns(RepresentationWarning, t.tip_tip_distances)
self.assertEqual(t_dm, exp_t_dm)
示例12: test_index_tree
# 需要导入模块: from skbio import TreeNode [as 别名]
# 或者: from skbio.TreeNode import read [as 别名]
def test_index_tree(self):
"""index_tree should produce correct index and node map"""
# test for first tree: contains singleton outgroup
t1 = TreeNode.read(io.StringIO('(((a,b),c),(d,e));'))
t2 = TreeNode.read(io.StringIO('(((a,b),(c,d)),(e,f));'))
t3 = TreeNode.read(io.StringIO('(((a,b,c),(d)),(e,f));'))
id_1, child_1 = t1.index_tree()
nodes_1 = [n.id for n in t1.traverse(self_before=False,
self_after=True)]
self.assertEqual(nodes_1, [0, 1, 2, 3, 6, 4, 5, 7, 8])
npt.assert_equal(child_1, np.array([[2, 0, 1], [6, 2, 3], [7, 4, 5],
[8, 6, 7]]))
# test for second tree: strictly bifurcating
id_2, child_2 = t2.index_tree()
nodes_2 = [n.id for n in t2.traverse(self_before=False,
self_after=True)]
self.assertEqual(nodes_2, [0, 1, 4, 2, 3, 5, 8, 6, 7, 9, 10])
npt.assert_equal(child_2, np.array([[4, 0, 1], [5, 2, 3],
[8, 4, 5], [9, 6, 7],
[10, 8, 9]]))
# test for third tree: contains trifurcation and single-child parent
id_3, child_3 = t3.index_tree()
nodes_3 = [n.id for n in t3.traverse(self_before=False,
self_after=True)]
self.assertEqual(nodes_3, [0, 1, 2, 4, 3, 5, 8, 6, 7, 9, 10])
npt.assert_equal(child_3, np.array([[4, 0, 2], [5, 3, 3], [8, 4, 5],
[9, 6, 7], [10, 8, 9]]))
示例13: test_commonname_promotion
# 需要导入模块: from skbio import TreeNode [as 别名]
# 或者: from skbio.TreeNode import read [as 别名]
def test_commonname_promotion(self):
"""correctly promote names if possible"""
consensus_tree = TreeNode.read(StringIO(u"(((s1,s2)g1,(s3,s4)g2,(s5,s6)g3)f1)o1;"))
rank_lookup = {'s': 6, 'g': 5, 'f': 4, 'o': 3, 'c': 2, 'p': 1, 'k': 0}
for n in consensus_tree.traverse(include_self=True):
n.Rank = rank_lookup[n.name[0]]
data = StringIO(u"((((1)s1,(2)s2),((3)s3,(4)s5)))o1;")
lookup = dict([(n.name, n)
for n in consensus_tree.traverse(include_self=True)])
exp = "((((1)s1,(2)s2)g1,((3)'g2; s3',(4)'g3; s5')))'o1; f1';"
t = TreeNode.read(data)
t.Rank = 3
t.children[0].Rank = None
t.children[0].children[0].Rank = None
t.children[0].children[1].Rank = None
t.children[0].children[0].children[0].Rank = 6
t.children[0].children[0].children[1].Rank = 6
t.children[0].children[1].children[0].Rank = 6
t.children[0].children[1].children[1].Rank = 6
backfill_names_gap(t, lookup)
commonname_promotion(t)
fp = StringIO()
t.write(fp)
self.assertEqual(fp.getvalue().strip(), exp)
示例14: test_compare_subsets
# 需要导入模块: from skbio import TreeNode [as 别名]
# 或者: from skbio.TreeNode import read [as 别名]
def test_compare_subsets(self):
"""compare_subsets should return the fraction of shared subsets"""
t = TreeNode.read(io.StringIO('((H,G),(R,M));'))
t2 = TreeNode.read(io.StringIO('(((H,G),R),M);'))
t4 = TreeNode.read(io.StringIO('(((H,G),(O,R)),X);'))
result = t.compare_subsets(t)
self.assertEqual(result, 0)
result = t2.compare_subsets(t2)
self.assertEqual(result, 0)
result = t.compare_subsets(t2)
self.assertEqual(result, 0.5)
result = t.compare_subsets(t4)
self.assertEqual(result, 1 - 2. / 5)
result = t.compare_subsets(t4, exclude_absent_taxa=True)
self.assertEqual(result, 1 - 2. / 3)
result = t.compare_subsets(self.TreeRoot, exclude_absent_taxa=True)
self.assertEqual(result, 1)
result = t.compare_subsets(self.TreeRoot)
self.assertEqual(result, 1)
示例15: test_extend
# 需要导入模块: from skbio import TreeNode [as 别名]
# 或者: from skbio.TreeNode import read [as 别名]
def test_extend(self):
"""Extend a few nodes"""
second_tree = TreeNode.read(io.StringIO("(x1,y1)z1;"))
third_tree = TreeNode.read(io.StringIO("(x2,y2)z2;"))
first_tree = TreeNode.read(io.StringIO("(x1,y1)z1;"))
fourth_tree = TreeNode.read(io.StringIO("(x2,y2)z2;"))
self.simple_t.extend([second_tree, third_tree])
first_tree.extend(fourth_tree.children)
self.assertEqual(0, len(fourth_tree.children))
self.assertEqual(first_tree.children[0].name, 'x1')
self.assertEqual(first_tree.children[1].name, 'y1')
self.assertEqual(first_tree.children[2].name, 'x2')
self.assertEqual(first_tree.children[3].name, 'y2')
self.assertEqual(self.simple_t.children[0].name, 'i1')
self.assertEqual(self.simple_t.children[1].name, 'i2')
self.assertEqual(self.simple_t.children[2].name, 'z1')
self.assertEqual(self.simple_t.children[3].name, 'z2')
self.assertEqual(len(self.simple_t.children), 4)
self.assertEqual(self.simple_t.children[2].children[0].name, 'x1')
self.assertEqual(self.simple_t.children[2].children[1].name, 'y1')
self.assertEqual(self.simple_t.children[3].children[0].name, 'x2')
self.assertEqual(self.simple_t.children[3].children[1].name, 'y2')
self.assertIs(second_tree.parent, self.simple_t)
self.assertIs(third_tree.parent, self.simple_t)