当前位置: 首页>>代码示例>>Python>>正文


Python Simulator.set_stop_when_colliding方法代码示例

本文整理汇总了Python中simulator.Simulator.set_stop_when_colliding方法的典型用法代码示例。如果您正苦于以下问题:Python Simulator.set_stop_when_colliding方法的具体用法?Python Simulator.set_stop_when_colliding怎么用?Python Simulator.set_stop_when_colliding使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在simulator.Simulator的用法示例。


在下文中一共展示了Simulator.set_stop_when_colliding方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from simulator import Simulator [as 别名]
# 或者: from simulator.Simulator import set_stop_when_colliding [as 别名]

#.........这里部分代码省略.........
             """ The observation error covariance matrix """
             N = self.calc_covariance_value(self.robot, 
                                            self.min_observation_covariance, 
                                            N_base, 
                                            covariance_type='observation')                    
         elif self.inc_covariance == "observation":
             M = self.calc_covariance_value(self.robot, 
                                            self.min_process_covariance,
                                            M_base)
             N = self.calc_covariance_value(self.robot, 
                                            m_covs[j],
                                            N_base, 
                                            covariance_type='observation')                    
         P_t = np.array([[0.0 for k in xrange(2 * self.robot_dof)] for l in xrange(2 * self.robot_dof)])
         
         path_planner.setup_path_evaluator(A, B, C, D, H, M, N, V, W,                                     
                                           self.robot, 
                                           self.sample_size, 
                                           self.obstacles,
                                           self.goal_position,
                                           self.goal_radius,                                              
                                           self.robot_file,
                                           self.environment_file)
         sim.setup_problem(A, B, C, D, H, V, W, M, N,
                           self.robot, 
                           self.enforce_control_constraints,
                           self.obstacles, 
                           self.goal_position, 
                           self.goal_radius,
                           self.max_velocity,                                  
                           self.show_viewer_simulation,
                           self.robot_file,
                           self.environment_file)
         sim.set_stop_when_colliding(self.replan_when_colliding)
         if self.dynamic_problem:
             path_evaluator.setup_dynamic_problem()
             sim.setup_dynamic_problem(self.simulation_step_size)
         path_planner.setup_reward_function(self.step_penalty, self.exit_reward, self.illegal_move_penalty, self.discount_factor)
         mean_number_planning_steps = 0.0
         number_of_steps = 0.0
         mean_planning_time = 0.0
         num_generated_paths_run = 0.0
         successful_runs = 0
         num_collisions = 0.0
         final_states= []
         rewards_cov = []
         for k in xrange(self.num_simulation_runs):
             print "MPC: Run " + str(k + 1)                                
             self.serializer.write_line("log.log", tmp_dir, "RUN #" + str(k + 1) + " \n")
             current_step = 0
             x_true = self.start_state
             x_estimate = self.start_state
             x_tilde_linear = np.array([0.0 for i in xrange(2 * self.robot_dof)])
             P_t = np.array([[0.0 for i in xrange(2 * self.robot_dof)] for i in xrange(2 * self.robot_dof)]) 
             deviation_covariance = np.array([[0.0 for i in xrange(2 * self.robot_dof)] for i in xrange(2 * self.robot_dof)])
             estimated_deviation_covariance = np.array([[0.0 for i in xrange(2 * self.robot_dof)] for i in xrange(2 * self.robot_dof)])              
             total_reward = 0.0
             terminal = False
             while current_step < self.max_num_steps and not terminal:
                 path_planner.set_start_and_goal(x_estimate, goal_states, self.goal_position, self.goal_radius)
                 t0 = time.time()
                 (xs, 
                  us, 
                  zs,
                  control_durations, 
                  num_generated_paths, 
开发者ID:hoergems,项目名称:LQG_Newt,代码行数:70,代码来源:mpc.py

示例2: __init__

# 需要导入模块: from simulator import Simulator [as 别名]
# 或者: from simulator.Simulator import set_stop_when_colliding [as 别名]

#.........这里部分代码省略.........
                           self.enforce_control_constraints,
                           self.obstacles, 
                           self.goal_position, 
                           self.goal_radius,
                           self.max_velocity,                                  
                           self.show_viewer_simulation,
                           self.robot_file,
                           self.environment_file,
                           self.knows_collision)
         path_evaluator.setup(A, B, C, D, H, M, N, V, W,                                     
                              self.robot, 
                              self.sample_size, 
                              self.obstacles,
                              self.goal_position,
                              self.goal_radius,
                              self.show_viewer_evaluation,
                              self.robot_file,
                              self.environment_file,
                              self.num_cores)
         path_evaluator.setup_reward_function(self.step_penalty, self.illegal_move_penalty, self.exit_reward, self.discount_factor)
         plan_adjuster.setup(self.robot,
                             M, 
                             H, 
                             W, 
                             N, 
                             C, 
                             D,
                             self.dynamic_problem, 
                             self.enforce_control_constraints)
         plan_adjuster.set_simulation_step_size(self.simulation_step_size)
         plan_adjuster.set_model_matrices(A, B, V)
         if not self.dynamic_problem:
             plan_adjuster.set_max_joint_velocities_linear_problem(np.array([self.max_velocity for i in xrange(self.robot_dof)]))
         sim.set_stop_when_colliding(self.replan_when_colliding)
         if self.dynamic_problem:
             path_evaluator.setup_dynamic_problem()
             sim.setup_dynamic_problem(self.simulation_step_size)
         path_planner.setup_reward_function(self.step_penalty, self.exit_reward, self.illegal_move_penalty, self.discount_factor)
         mean_number_planning_steps = 0.0
         number_of_steps = 0.0
         mean_planning_time = 0.0
         num_generated_paths_run = 0.0
         successful_runs = 0
         num_collisions = 0.0
         linearization_error = 0.0
         final_states= []
         rewards_cov = []
         for k in xrange(self.num_simulation_runs):
             print "HRF: Run " + str(k + 1)                                
             self.serializer.write_line("log.log", tmp_dir, "RUN #" + str(k + 1) + " \n")
             current_step = 0
             x_true = np.array([self.start_state[m] for m in xrange(len(self.start_state))])
             x_estimated = np.array([self.start_state[m] for m in xrange(len(self.start_state))])
             #x_estimated[0] += 0.2                
             #x_estimated[0] = 0.4             
             #x_predicted = self.start_state                               
             P_t = np.array([[0.0 for i in xrange(2 * self.robot_dof)] for i in xrange(2 * self.robot_dof)]) 
             P_ext_t = np.array([[0.0 for i in xrange(2 * self.robot_dof)] for i in xrange(2 * self.robot_dof)]) 
             deviation_covariance = np.array([[0.0 for i in xrange(2 * self.robot_dof)] for i in xrange(2 * self.robot_dof)])
             estimated_deviation_covariance = np.array([[0.0 for i in xrange(2 * self.robot_dof)] for i in xrange(2 * self.robot_dof)])              
             total_reward = 0.0
             terminal = False 
             last_x_true = None               
             
             """
             Obtain a nominal path
开发者ID:hoergems,项目名称:LQG,代码行数:70,代码来源:HRF.py


注:本文中的simulator.Simulator.set_stop_when_colliding方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。