本文整理汇总了Python中sherpa.models.parameter.Parameter类的典型用法代码示例。如果您正苦于以下问题:Python Parameter类的具体用法?Python Parameter怎么用?Python Parameter使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Parameter类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: NormBeta1D
class NormBeta1D(ArithmeticModel):
def __init__(self, name='normbeta1d'):
self.pos = Parameter(name, 'pos', 0)
self.width = Parameter(name, 'width', 1, tinyval, hard_min=tinyval)
self.index = Parameter(name, 'index', 2.5, 0.5, 1000, 0.5)
self.ampl = Parameter(name, 'ampl', 1, 0)
ArithmeticModel.__init__(self, name,
(self.pos, self.width, self.index, self.ampl))
def get_center(self):
return (self.pos.val,)
def set_center(self, pos, *args, **kwargs):
self.pos.set(pos)
def guess(self, dep, *args, **kwargs):
ampl = guess_amplitude(dep, *args)
pos = get_position(dep, *args)
fwhm = guess_fwhm(dep, *args)
param_apply_limits(pos, self.pos, **kwargs)
norm = (fwhm['val']*numpy.sqrt(numpy.pi)*
numpy.exp(lgam(self.index.val-0.5)-lgam(self.index.val)))
for key in ampl.keys():
ampl[key] *= norm
param_apply_limits(ampl, self.ampl, **kwargs)
@modelCacher1d
def calc(self, *args, **kwargs):
kwargs['integrate']=bool_cast(self.integrate)
return _modelfcts.nbeta1d(*args, **kwargs)
示例2: Lorentz1D
class Lorentz1D(ArithmeticModel):
def __init__(self, name='lorentz1d'):
self.fwhm = Parameter(name, 'fwhm', 10, 0, hard_min=0)
self.pos = Parameter(name, 'pos', 1)
self.ampl = Parameter(name, 'ampl', 1)
ArithmeticModel.__init__(self, name,
(self.fwhm, self.pos, self.ampl))
def get_center(self):
return (self.pos.val,)
def set_center(self, pos, *args, **kwargs):
self.pos.set(pos)
def guess(self, dep, *args, **kwargs):
pos = get_position(dep, *args)
fwhm = guess_fwhm(dep, *args)
param_apply_limits(pos, self.pos, **kwargs)
param_apply_limits(fwhm, self.fwhm, **kwargs)
norm = guess_amplitude(dep, *args)
if fwhm != 10:
aprime = norm['val']*self.fwhm.val*numpy.pi/2.
ampl = {'val': aprime,
'min': aprime/_guess_ampl_scale,
'max': aprime*_guess_ampl_scale}
param_apply_limits(ampl, self.ampl, **kwargs)
else:
param_apply_limits(norm, self.ampl, **kwargs)
@modelCacher1d
def calc(self, *args, **kwargs):
kwargs['integrate']=bool_cast(self.integrate)
return _modelfcts.lorentz1d(*args, **kwargs)
示例3: Lorentz2D
class Lorentz2D(ArithmeticModel):
def __init__(self, name='lorentz2d'):
self.fwhm = Parameter(name, 'fwhm', 10, tinyval, hard_min=tinyval)
self.xpos = Parameter(name, 'xpos', 0)
self.ypos = Parameter(name, 'ypos', 0)
self.ellip = Parameter(name, 'ellip', 0, 0, 0.999, 0, 0.9999,
frozen=True)
self.theta = Parameter(name, 'theta', 0, 0, 2*numpy.pi, -2*numpy.pi,
4*numpy.pi, 'radians',frozen=True)
self.ampl = Parameter(name, 'ampl', 1)
ArithmeticModel.__init__(self, name,
(self.fwhm, self.xpos, self.ypos, self.ellip,
self.theta, self.ampl))
self.cache = 0
def get_center(self):
return (self.xpos.val, self.ypos.val)
def set_center(self, xpos, ypos, *args, **kwargs):
self.xpos.set(xpos)
self.ypos.set(ypos)
def guess(self, dep, *args, **kwargs):
xpos, ypos = guess_position(dep, *args)
norm = guess_amplitude2d(dep, *args)
param_apply_limits(xpos, self.xpos, **kwargs)
param_apply_limits(ypos, self.ypos, **kwargs)
param_apply_limits(norm, self.ampl, **kwargs)
def calc(self, *args, **kwargs):
kwargs['integrate']=bool_cast(self.integrate)
return _modelfcts.lorentz2d(*args, **kwargs)
示例4: HubbleReynolds
class HubbleReynolds(ArithmeticModel):
def __init__(self, name='hubblereynolds'):
self.r0 = Parameter(name, 'r0', 10, 0, hard_min=0)
self.xpos = Parameter(name, 'xpos', 0)
self.ypos = Parameter(name, 'ypos', 0)
self.ellip = Parameter(name, 'ellip', 0, 0, 0.999, 0, 0.9999)
self.theta = Parameter(name, 'theta', 0, 0, 2*numpy.pi, -2*numpy.pi,
4*numpy.pi, 'radians')
self.ampl = Parameter(name, 'ampl', 1)
ArithmeticModel.__init__(self, name,
(self.r0, self.xpos, self.ypos, self.ellip,
self.theta, self.ampl))
self.cache = 0
def get_center(self):
return (self.xpos.val, self.ypos.val)
def set_center(self, xpos, ypos, *args, **kwargs):
self.xpos.set(xpos)
self.ypos.set(ypos)
def guess(self, dep, *args, **kwargs):
xpos, ypos = guess_position(dep, *args)
norm = guess_amplitude2d(dep, *args)
rad = guess_radius(*args)
param_apply_limits(xpos, self.xpos, **kwargs)
param_apply_limits(ypos, self.ypos, **kwargs)
param_apply_limits(norm, self.ampl, **kwargs)
param_apply_limits(rad, self.r0, **kwargs)
def calc(self, *args, **kwargs):
kwargs['integrate']=bool_cast(self.integrate)
return _modelfcts.hr(*args, **kwargs)
示例5: Beta1D
class Beta1D(ArithmeticModel):
def __init__(self, name='beta1d'):
self.r0 = Parameter(name, 'r0', 1, tinyval, hard_min=tinyval)
self.beta = Parameter(name, 'beta', 1, 1e-05, 10, 1e-05, 10)
self.xpos = Parameter(name, 'xpos', 0, 0, frozen=True)
self.ampl = Parameter(name, 'ampl', 1, 0)
ArithmeticModel.__init__(self, name,
(self.r0, self.beta, self.xpos, self.ampl))
def get_center(self):
return (self.xpos.val,)
def set_center(self, xpos, *args, **kwargs):
self.xpos.set(xpos)
def guess(self, dep, *args, **kwargs):
pos = get_position(dep, *args)
param_apply_limits(pos, self.xpos, **kwargs)
ref = guess_reference(self.r0.min, self.r0.max, *args)
param_apply_limits(ref, self.r0, **kwargs)
norm = guess_amplitude_at_ref(self.r0.val, dep, *args)
param_apply_limits(norm, self.ampl, **kwargs)
@modelCacher1d
def calc(self, *args, **kwargs):
kwargs['integrate']=bool_cast(self.integrate)
return _modelfcts.beta1d(*args, **kwargs)
示例6: __init__
def __init__(self, name='hubblereynolds'):
self.r0 = Parameter(name, 'r0', 10, 0, hard_min=0)
self.xpos = Parameter(name, 'xpos', 0)
self.ypos = Parameter(name, 'ypos', 0)
self.ellip = Parameter(name, 'ellip', 0, 0, 0.999, 0, 0.9999)
self.theta = Parameter(name, 'theta', 0, 0, 2*numpy.pi, -2*numpy.pi,
4*numpy.pi, 'radians')
self.ampl = Parameter(name, 'ampl', 1)
ArithmeticModel.__init__(self, name,
(self.r0, self.xpos, self.ypos, self.ellip,
self.theta, self.ampl))
self.cache = 0
示例7: Synchrotron
class Synchrotron(ArithmeticModel):
def __init__(self,name='IC'):
self.index = Parameter(name, 'index', 2.0, min=-10, max=10)
self.ref = Parameter(name, 'ref', 20, min=0, frozen=True, units='TeV')
self.ampl = Parameter(name, 'ampl', 1, min=0, max=1e60, hard_max=1e100, units='1e30/eV')
self.cutoff = Parameter(name, 'cutoff', 0.0, min=0,frozen=True, units='TeV')
self.beta = Parameter(name, 'beta', 1, min=0, max=10, frozen=True)
self.B = Parameter(name, 'B', 1, min=0, max=10, frozen=True, units='G')
self.verbose = Parameter(name, 'verbose', 0, min=0, frozen=True)
ArithmeticModel.__init__(self,name,(self.index,self.ref,self.ampl,self.cutoff,self.beta,self.B,self.verbose))
self._use_caching = True
self.cache = 10
def guess(self,dep,*args,**kwargs):
# guess normalization from total flux
xlo,xhi=args
model=self.calc([p.val for p in self.pars],xlo,xhi)
modflux=trapz_loglog(model,xlo)
obsflux=trapz_loglog(dep*(xhi-xlo),xlo)
self.ampl.set(self.ampl.val*obsflux/modflux)
@modelCacher1d
def calc(self,p,x,xhi=None):
index,ref,ampl,cutoff,beta,B,verbose = p
# Sherpa provides xlo, xhi in KeV, we merge into a single array if bins required
if xhi is None:
outspec = x * u.keV
else:
outspec = _mergex(x,xhi) * u.keV
if cutoff == 0.0:
pdist = models.PowerLaw(ampl * 1e30 * u.Unit('1/eV'), ref * u.TeV, index)
else:
pdist = models.ExponentialCutoffPowerLaw(ampl * 1e30 * u.Unit('1/eV'),
ref * u.TeV, index, cutoff * u.TeV, beta=beta)
sy = models.Synchrotron(pdist, B=B*u.G,
log10gmin=5, log10gmax=10, ngamd=50)
model = sy.flux(outspec, distance=1*u.kpc).to('1/(s cm2 keV)')
# Do a trapz integration to obtain the photons per bin
if xhi is None:
photons = (model * outspec).to('1/(s cm2)').value
else:
photons = trapz_loglog(model,outspec,intervals=True).to('1/(s cm2)').value
if verbose:
print(self.thawedpars, trapz_loglog(outspec*model,outspec).to('erg/(s cm2)'))
return photons
示例8: __init__
def __init__(self,name='pp'):
self.index = Parameter(name , 'index' , 2.1 , min=-10 , max=10)
self.ref = Parameter(name , 'ref' , 60 , min=0 , frozen=True , units='TeV')
self.ampl = Parameter(name , 'ampl' , 100 , min=0 , max=1e60 , hard_max=1e100 , units='1e30/eV')
self.cutoff = Parameter(name , 'cutoff' , 0 , min=0 , frozen=True , units='TeV')
self.beta = Parameter(name , 'beta' , 1 , min=0 , max=10 , frozen=True)
self.nh = Parameter(name , 'nH' , 1 , min=0 , frozen=True , units='1/cm3')
self.verbose = Parameter(name , 'verbose' , 0 , min=0 , frozen=True)
ArithmeticModel.__init__(self,name,(self.index,self.ref,self.ampl,self.cutoff,self.beta,self.nh,self.verbose))
self._use_caching = True
self.cache = 10
示例9: HubbleReynolds
class HubbleReynolds(ArithmeticModel):
"""Two-dimensional Hubble-Reynolds model.
Attributes
----------
r0
The core radius.
xpos
The center of the model on the x0 axis.
ypos
The center of the model on the x1 axis.
ellip
The ellipticity of the model.
theta
The angle of the major axis. It is in radians, measured
counter-clockwise from the X0 axis (i.e. the line X1=0).
ampl
The amplitude refers to the maximum peak of the model.
See Also
--------
Beta2D, DeVaucouleurs2D, Lorentz2D, Sersic2D
Notes
-----
The functional form of the model for points is::
f(x0,x1) = ampl / (1 + r(x0,x1))^2
r(x0,x1)^2 = xoff(x0,x1)^2 * (1-ellip)^2 + yoff(x0,x1)^2
-------------------------------------------
r0^2 * (1-ellip)^2
xoff(x0,x1) = (x0 - xpos) * cos(theta) + (x1 - ypos) * sin(theta)
yoff(x0,x1) = (x1 - ypos) * cos(theta) - (x0 - xpos) * sin(theta)
The grid version is evaluated by adaptive multidimensional
integration scheme on hypercubes using cubature rules, based
on code from HIntLib ([1]_) and GSL ([2]_).
References
----------
.. [1] HIntLib - High-dimensional Integration Library
http://mint.sbg.ac.at/HIntLib/
.. [2] GSL - GNU Scientific Library
http://www.gnu.org/software/gsl/
"""
def __init__(self, name='hubblereynolds'):
self.r0 = Parameter(name, 'r0', 10, 0, hard_min=0)
self.xpos = Parameter(name, 'xpos', 0)
self.ypos = Parameter(name, 'ypos', 0)
self.ellip = Parameter(name, 'ellip', 0, 0, 0.999, 0, 0.9999)
self.theta = Parameter(name, 'theta', 0, -2*numpy.pi, 2*numpy.pi, -2*numpy.pi,
4*numpy.pi, 'radians')
self.ampl = Parameter(name, 'ampl', 1)
ArithmeticModel.__init__(self, name,
(self.r0, self.xpos, self.ypos, self.ellip,
self.theta, self.ampl))
self.cache = 0
def get_center(self):
return (self.xpos.val, self.ypos.val)
def set_center(self, xpos, ypos, *args, **kwargs):
self.xpos.set(xpos)
self.ypos.set(ypos)
def guess(self, dep, *args, **kwargs):
xpos, ypos = guess_position(dep, *args)
norm = guess_amplitude2d(dep, *args)
rad = guess_radius(*args)
param_apply_limits(xpos, self.xpos, **kwargs)
param_apply_limits(ypos, self.ypos, **kwargs)
param_apply_limits(norm, self.ampl, **kwargs)
param_apply_limits(rad, self.r0, **kwargs)
def calc(self, *args, **kwargs):
kwargs['integrate']=bool_cast(self.integrate)
return _modelfcts.hr(*args, **kwargs)
示例10: test_parameter
class test_parameter(SherpaTestCase):
def setUp(self):
self.p = Parameter('model', 'name', 0, -10, 10, -100, 100, 'units')
self.afp = Parameter('model', 'name', 0, alwaysfrozen=True)
def test_name(self):
self.assertEqual(self.p.modelname, 'model')
self.assertEqual(self.p.name, 'name')
self.assertEqual(self.p.fullname, 'model.name')
def test_alwaysfrozen(self):
self.assertTrue(self.afp.frozen)
self.afp.frozen = True
self.assertTrue(self.afp.frozen)
self.afp.freeze()
self.assertTrue(self.afp.frozen)
self.assertRaises(ParameterErr, self.afp.thaw)
self.assertRaises(ParameterErr, setattr, self.afp, 'frozen', 0)
def test_readonly_attributes(self):
self.assertEqual(self.p.alwaysfrozen, False)
self.assertRaises(AttributeError, setattr, self.p, 'alwaysfrozen', 1)
self.assertEqual(self.p.hard_min, -100.0)
self.assertRaises(AttributeError, setattr, self.p, 'hard_min', -1000)
self.assertEqual(self.p.hard_max, 100.0)
self.assertRaises(AttributeError, setattr, self.p, 'hard_max', 1000)
def test_val(self):
self.p.val = -7
self.assertEqual(self.p.val, -7)
self.assertTrue(type(self.p.val) is SherpaFloat)
self.assertRaises(ValueError, setattr, self.p, 'val', 'ham')
self.assertRaises(ParameterErr, setattr, self.p, 'val', -101)
self.assertRaises(ParameterErr, setattr, self.p, 'val', 101)
def test_min_max(self):
for attr, sign in (('min', -1), ('max', 1)):
setattr(self.p, attr, sign * 99)
val = getattr(self.p, attr)
self.assertEqual(val, sign * 99)
self.assertTrue(type(val) is SherpaFloat)
self.assertRaises(ValueError, setattr, self.p, attr, 'ham')
self.assertRaises(ParameterErr, setattr, self.p, attr, -101)
self.assertRaises(ParameterErr, setattr, self.p, attr, 101)
def test_frozen(self):
self.p.frozen = 1.0
self.assertTrue(self.p.frozen is True)
self.p.frozen = []
self.assertTrue(self.p.frozen is False)
self.assertRaises(TypeError, setattr, self.p.frozen, arange(10))
self.p.link = self.afp
self.assertTrue(self.p.frozen is True)
self.p.link = None
self.p.freeze()
self.assertTrue(self.p.frozen is True)
self.p.thaw()
self.assertTrue(self.p.frozen is False)
def test_link(self):
self.p.link = None
self.assertTrue(self.p.link is None)
self.assertNotEqual(self.p.val, 17.3)
self.afp.val = 17.3
self.p.link = self.afp
self.assertEqual(self.p.val, 17.3)
self.p.unlink()
self.assertTrue(self.p.link is None)
self.assertRaises(ParameterErr, setattr, self.afp, 'link', self.p)
self.assertRaises(ParameterErr, setattr, self.p, 'link', 3)
self.assertRaises(ParameterErr, setattr, self.p, 'link',
3 * self.p + 2)
def test_iter(self):
for part in self.p:
self.assertTrue(part is self.p)
示例11: Beta2D
class Beta2D(RegriddableModel2D):
"""Two-dimensional beta model function.
The beta model is a Lorentz model with a varying power law.
Attributes
----------
r0
The core radius.
xpos
X0 axis coordinate of the model center (position of the peak).
ypos
X1 axis coordinate of the model center (position of the peak).
ellip
The ellipticity of the model.
theta
The angle of the major axis. It is in radians, measured
counter-clockwise from the X0 axis (i.e. the line X1=0).
ampl
The model value at the peak position (xpos, ypos).
alpha
The power-law slope of the profile at large radii.
See Also
--------
Beta1D, DeVaucouleurs2D, HubbleReynolds, Lorentz2D, Sersic2D
Notes
-----
The functional form of the model for points is::
f(x0,x1) = ampl * (1 + r(x0,x1)^2)^(-alpha)
r(x0,x1)^2 = xoff(x0,x1)^2 * (1-ellip)^2 + yoff(x0,x1)^2
-------------------------------------------
r0^2 * (1-ellip)^2
xoff(x0,x1) = (x0 - xpos) * cos(theta) + (x1 - ypos) * sin(theta)
yoff(x0,x1) = (x1 - ypos) * cos(theta) - (x0 - xpos) * sin(theta)
The grid version is evaluated by adaptive multidimensional
integration scheme on hypercubes using cubature rules, based
on code from HIntLib ([1]_) and GSL ([2]_).
References
----------
.. [1] HIntLib - High-dimensional Integration Library
http://mint.sbg.ac.at/HIntLib/
.. [2] GSL - GNU Scientific Library
http://www.gnu.org/software/gsl/
"""
def __init__(self, name='beta2d'):
self.r0 = Parameter(name, 'r0', 10, tinyval, hard_min=tinyval)
self.xpos = Parameter(name, 'xpos', 0)
self.ypos = Parameter(name, 'ypos', 0)
self.ellip = Parameter(name, 'ellip', 0, 0, 0.999, 0, 0.9999,
frozen=True)
self.theta = Parameter(name, 'theta', 0, -2*numpy.pi, 2*numpy.pi, -2*numpy.pi,
4*numpy.pi, 'radians', True)
self.ampl = Parameter(name, 'ampl', 1)
self.alpha = Parameter(name, 'alpha', 1, -10, 10)
ArithmeticModel.__init__(self, name,
(self.r0, self.xpos, self.ypos, self.ellip,
self.theta, self.ampl, self.alpha))
self.cache = 0
def get_center(self):
return (self.xpos.val, self.ypos.val)
def set_center(self, xpos, ypos, *args, **kwargs):
self.xpos.set(xpos)
self.ypos.set(ypos)
def guess(self, dep, *args, **kwargs):
xpos, ypos = guess_position(dep, *args)
norm = guess_amplitude2d(dep, *args)
rad = guess_radius(*args)
param_apply_limits(xpos, self.xpos, **kwargs)
param_apply_limits(ypos, self.ypos, **kwargs)
param_apply_limits(norm, self.ampl, **kwargs)
param_apply_limits(rad, self.r0, **kwargs)
def calc(self, *args, **kwargs):
kwargs['integrate'] = bool_cast(self.integrate)
return _modelfcts.beta2d(*args, **kwargs)
示例12: setUp
def setUp(self):
self.p = Parameter('model', 'name', 0, -10, 10, -100, 100, 'units')
self.afp = Parameter('model', 'name', 0, alwaysfrozen=True)
示例13: Sersic2D
class Sersic2D(ArithmeticModel):
"""Two-dimensional Sersic model.
This is a generalization of the ``DeVaucouleurs2D`` model,
in which the exponent ``n`` can vary ([1]_, [2]_, and [3]_).
Attributes
----------
r0
The core radius.
xpos
The center of the model on the x0 axis.
ypos
The center of the model on the x1 axis.
ellip
The ellipticity of the model.
theta
The angle of the major axis. It is in radians, measured
counter-clockwise from the X0 axis (i.e. the line X1=0).
ampl
The amplitude refers to the maximum peak of the model.
n
The Sersic index (n=4 replicates the ``DeVaucouleurs2D``
model).
See Also
--------
Beta2D, DeVaucouleurs2D, HubbleReynolds, Lorentz2D
Notes
-----
The functional form of the model for points is can be
expressed as the following::
f(x0,x1) = ampl * exp(-b(n) * (r(x0,x1)^(1/n) - 1))
b(n) = 2 * n - 1 / 3 + 4 / (405 * n) + 46 / (25515 * n^2)
r(x0,x1)^2 = xoff(x0,x1)^2 * (1-ellip)^2 + yoff(x0,x1)^2
-------------------------------------------
r0^2 * (1-ellip)^2
xoff(x0,x1) = (x0 - xpos) * cos(theta) + (x1 - ypos) * sin(theta)
yoff(x0,x1) = (x1 - ypos) * cos(theta) - (x0 - xpos) * sin(theta)
The grid version is evaluated by adaptive multidimensional
integration scheme on hypercubes using cubature rules, based
on code from HIntLib ([4]_) and GSL ([5]_).
References
----------
.. [1] http://ned.ipac.caltech.edu/level5/March05/Graham/Graham2.html
.. [2] Graham, A. & Driver, S., 2005, PASA, 22, 118
http://adsabs.harvard.edu/abs/2005PASA...22..118G
.. [3] Ciotti, L. & Bertin, G., A&A, 1999, 352, 447-451
http://adsabs.harvard.edu/abs/1999A%26A...352..447C
.. [4] HIntLib - High-dimensional Integration Library
http://mint.sbg.ac.at/HIntLib/
.. [5] GSL - GNU Scientific Library
http://www.gnu.org/software/gsl/
"""
def __init__(self, name='sersic2d'):
self.r0 = Parameter(name, 'r0', 10, 0, hard_min=0)
self.xpos = Parameter(name, 'xpos', 0)
self.ypos = Parameter(name, 'ypos', 0)
self.ellip = Parameter(name, 'ellip', 0, 0, 0.999, 0, 0.9999)
self.theta = Parameter(name, 'theta', 0, -2*numpy.pi, 2*numpy.pi, -2*numpy.pi,
4*numpy.pi, 'radians')
self.ampl = Parameter(name, 'ampl', 1)
self.n = Parameter(name,'n', 1, .1, 10, 0.01, 100, frozen=True )
ArithmeticModel.__init__(self, name,
(self.r0, self.xpos, self.ypos, self.ellip,
self.theta, self.ampl, self.n))
self.cache = 0
def get_center(self):
return (self.xpos.val, self.ypos.val)
def set_center(self, xpos, ypos, *args, **kwargs):
self.xpos.set(xpos)
self.ypos.set(ypos)
def guess(self, dep, *args, **kwargs):
xpos, ypos = guess_position(dep, *args)
norm = guess_amplitude2d(dep, *args)
rad = guess_radius(*args)
param_apply_limits(xpos, self.xpos, **kwargs)
param_apply_limits(ypos, self.ypos, **kwargs)
param_apply_limits(norm, self.ampl, **kwargs)
param_apply_limits(rad, self.r0, **kwargs)
#.........这里部分代码省略.........
示例14: print
galabso.nH.freeze()
galabso.nH.val = props['nhgal'] / 1e22
print('freezing background params')
for p in get_bkg_model(id).pars:
p.freeze()
print(get_model(id))
if id2:
for p in get_bkg_model(id2).pars:
p.freeze()
print(get_model(id2))
print('creating prior functions...')
srclevel = Parameter('src', 'level', numpy.log10(sphere.norm.val), -8, 3, -8, 3)
srclevel2 = Parameter('src2', 'level', numpy.log10(sphere2.norm.val), -8, 3, -8, 3)
srcnh = Parameter('src', 'nh', numpy.log10(sphere.nh.val)+22, 20, 26, 20, 26)
galnh = galabso.nH.val
sphere.norm = 10**srclevel
sphere2.norm = 10**srclevel2
sphere.nh = 10**(srcnh - 22)
sphere2.nh = 10**(srcnh - 22)
galabso.nH = 10**(galnh - 22)
priors = []
parameters = [srclevel, sphere.phoindex, srcnh]
import bxa.sherpa as bxa
priors += [bxa.create_uniform_prior_for(srclevel)]
priors += [bxa.create_gaussian_prior_for(sphere.phoindex, 1.95, 0.15)]
priors += [bxa.create_uniform_prior_for(srcnh)]
示例15: Beta1D
class Beta1D(ArithmeticModel):
"""One-dimensional beta model function.
The beta model is a Lorentz model with a varying power law.
Attributes
----------
r0
The core radius.
beta
This parameter controls the slope of the profile at large
radii.
xpos
The reference point of the profile. This is frozen by default.
ampl
The amplitude refers to the maximum value of the model, at
x = xpos.
See Also
--------
Beta2D, Lorentz1D, NormBeta1D
Notes
-----
The functional form of the model for points is::
f(x) = ampl * (1 + ((x - xpos) / r0)^2)^(0.5 - 3 * beta)
The grid version is evaluated by numerically intgerating the
function over each bin using a non-adaptive Gauss-Kronrod scheme
suited for smooth functions [1]_, falling over to a simple
trapezoid scheme if this fails.
References
----------
.. [1] https://www.gnu.org/software/gsl/manual/html_node/QNG-non_002dadaptive-Gauss_002dKronrod-integration.html
"""
def __init__(self, name='beta1d'):
self.r0 = Parameter(name, 'r0', 1, tinyval, hard_min=tinyval)
self.beta = Parameter(name, 'beta', 1, 1e-05, 10, 1e-05, 10)
self.xpos = Parameter(name, 'xpos', 0, 0, frozen=True)
self.ampl = Parameter(name, 'ampl', 1, 0)
ArithmeticModel.__init__(self, name,
(self.r0, self.beta, self.xpos, self.ampl))
def get_center(self):
return (self.xpos.val,)
def set_center(self, xpos, *args, **kwargs):
self.xpos.set(xpos)
def guess(self, dep, *args, **kwargs):
pos = get_position(dep, *args)
param_apply_limits(pos, self.xpos, **kwargs)
ref = guess_reference(self.r0.min, self.r0.max, *args)
param_apply_limits(ref, self.r0, **kwargs)
norm = guess_amplitude_at_ref(self.r0.val, dep, *args)
param_apply_limits(norm, self.ampl, **kwargs)
@modelCacher1d
def calc(self, *args, **kwargs):
kwargs['integrate']=bool_cast(self.integrate)
return _modelfcts.beta1d(*args, **kwargs)