本文整理汇总了Python中sfepy.discrete.fem.Mesh.from_region方法的典型用法代码示例。如果您正苦于以下问题:Python Mesh.from_region方法的具体用法?Python Mesh.from_region怎么用?Python Mesh.from_region使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sfepy.discrete.fem.Mesh
的用法示例。
在下文中一共展示了Mesh.from_region方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from sfepy.discrete.fem import Mesh [as 别名]
# 或者: from sfepy.discrete.fem.Mesh import from_region [as 别名]
def main():
parser = ArgumentParser(description=__doc__.rstrip(),
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('filename', help=helps['filename'])
parser.add_argument('-d', '--detailed',
action='store_true', dest='detailed',
default=False, help=helps['detailed'])
options = parser.parse_args()
mesh = Mesh.from_file(options.filename)
output(mesh.cmesh)
output('element types:', mesh.descs)
output('nodal BCs:', sorted(mesh.nodal_bcs.keys()))
bbox = mesh.get_bounding_box()
output('bounding box:\n%s'
% '\n'.join('%s: [%14.7e, %14.7e]' % (name, bbox[0, ii], bbox[1, ii])
for ii, name in enumerate('xyz'[:mesh.dim])))
output('centre: [%s]'
% ', '.join('%14.7e' % ii for ii in 0.5 * (bbox[0] + bbox[1])))
output('coordinates mean: [%s]'
% ', '.join('%14.7e' % ii for ii in mesh.coors.mean(0)))
if not options.detailed: return
domain = FEDomain(mesh.name, mesh)
for dim in range(1, mesh.cmesh.tdim + 1):
volumes = mesh.cmesh.get_volumes(dim)
output('volumes of %d %dD entities:\nmin: %.7e mean: %.7e median:'
' %.7e max: %.7e'
% (mesh.cmesh.num[dim], dim, volumes.min(), volumes.mean(),
nm.median(volumes), volumes.max()))
euler = lambda mesh: nm.dot(mesh.cmesh.num, [1, -1, 1, -1])
ec = euler(mesh)
output('Euler characteristic:', ec)
graph = mesh.create_conn_graph(verbose=False)
n_comp, _ = graph_components(graph.shape[0], graph.indptr, graph.indices)
output('number of connected components:', n_comp)
if mesh.dim > 1:
region = domain.create_region('surf', 'vertices of surface', 'facet')
surf_mesh = Mesh.from_region(region, mesh,
localize=True, is_surface=True)
FEDomain(surf_mesh.name, surf_mesh) # Calls CMesh.setup_entities().
sec = euler(surf_mesh)
output('surface Euler characteristic:', sec)
if mesh.dim == 3:
output('surface genus:', (2.0 - sec) / 2.0)
surf_graph = surf_mesh.create_conn_graph(verbose=False)
n_comp, _ = graph_components(surf_graph.shape[0],
surf_graph.indptr, surf_graph.indices)
output('number of connected surface components:', n_comp)
示例2: refine_region
# 需要导入模块: from sfepy.discrete.fem import Mesh [as 别名]
# 或者: from sfepy.discrete.fem.Mesh import from_region [as 别名]
def refine_region(domain0, region0, region1):
"""
Coarse cell sub_cells[ii, 0] in mesh0 is split into sub_cells[ii, 1:] in
mesh1.
The new fine cells are interleaved among the original coarse cells so that
the indices of the coarse cells do not change.
The cell groups are preserved. The vertex groups are preserved only in the
coarse (non-refined) cells.
"""
if region1 is None:
return domain0, None
mesh0 = domain0.mesh
mesh1 = Mesh.from_region(region1, mesh0)
domain1 = FEDomain('d', mesh1)
domain1r = domain1.refine()
mesh1r = domain1r.mesh
n_cell = region1.shape.n_cell
n_sub = 4 if mesh0.cmesh.tdim == 2 else 8
sub_cells = nm.empty((n_cell, n_sub + 1), dtype=nm.uint32)
sub_cells[:, 0] = region1.cells
sub_cells[:, 1] = region1.cells
aux = nm.arange((n_sub - 1) * n_cell, dtype=nm.uint32)
sub_cells[:, 2:] = mesh0.n_el + aux.reshape((n_cell, -1))
coors0, vgs0, conns0, mat_ids0, descs0 = mesh0._get_io_data()
coors, vgs, _conns, _mat_ids, descs = mesh1r._get_io_data()
# Preserve vertex groups of non-refined cells.
vgs[:len(vgs0)] = vgs0
def _interleave_refined(c0, c1):
if c1.ndim == 1:
c0 = c0[:, None]
c1 = c1[:, None]
n_row, n_col = c1.shape
n_new = region0.shape.n_cell + n_row
out = nm.empty((n_new, n_col), dtype=c0.dtype)
out[region0.cells] = c0[region0.cells]
out[region1.cells] = c1[::n_sub]
aux = c1.reshape((-1, n_col * n_sub))
out[mesh0.n_el:] = aux[:, n_col:].reshape((-1, n_col))
return out
conn = _interleave_refined(conns0[0], _conns[0])
mat_id = _interleave_refined(mat_ids0[0], _mat_ids[0]).squeeze()
mesh = Mesh.from_data('a', coors, vgs, [conn], [mat_id], descs)
domain = FEDomain('d', mesh)
return domain, sub_cells
示例3: create_local_problem
# 需要导入模块: from sfepy.discrete.fem import Mesh [as 别名]
# 或者: from sfepy.discrete.fem.Mesh import from_region [as 别名]
def create_local_problem(omega_gi, orders):
"""
Local problem definition using a domain corresponding to the global region
`omega_gi`.
"""
order_u, order_p = orders
mesh = omega_gi.domain.mesh
# All tasks have the whole mesh.
bbox = mesh.get_bounding_box()
min_x, max_x = bbox[:, 0]
eps_x = 1e-8 * (max_x - min_x)
min_y, max_y = bbox[:, 1]
eps_y = 1e-8 * (max_y - min_y)
mesh_i = Mesh.from_region(omega_gi, mesh, localize=True)
domain_i = FEDomain('domain_i', mesh_i)
omega_i = domain_i.create_region('Omega', 'all')
gamma1_i = domain_i.create_region('Gamma1',
'vertices in (x < %.10f)'
% (min_x + eps_x),
'facet', allow_empty=True)
gamma2_i = domain_i.create_region('Gamma2',
'vertices in (x > %.10f)'
% (max_x - eps_x),
'facet', allow_empty=True)
gamma3_i = domain_i.create_region('Gamma3',
'vertices in (y < %.10f)'
% (min_y + eps_y),
'facet', allow_empty=True)
field1_i = Field.from_args('fu', nm.float64, mesh.dim, omega_i,
approx_order=order_u)
field2_i = Field.from_args('fp', nm.float64, 1, omega_i,
approx_order=order_p)
output('field 1: number of local DOFs:', field1_i.n_nod)
output('field 2: number of local DOFs:', field2_i.n_nod)
u_i = FieldVariable('u_i', 'unknown', field1_i, order=0)
v_i = FieldVariable('v_i', 'test', field1_i, primary_var_name='u_i')
p_i = FieldVariable('p_i', 'unknown', field2_i, order=1)
q_i = FieldVariable('q_i', 'test', field2_i, primary_var_name='p_i')
if mesh.dim == 2:
alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]])
else:
alpha = 1e2 * nm.array([[0.132], [0.132], [0.132],
[0.092], [0.092], [0.092]])
mat = Material('m', D=stiffness_from_lame(mesh.dim, lam=10, mu=5),
k=1, alpha=alpha)
integral = Integral('i', order=2*(max(order_u, order_p)))
t11 = Term.new('dw_lin_elastic(m.D, v_i, u_i)',
integral, omega_i, m=mat, v_i=v_i, u_i=u_i)
t12 = Term.new('dw_biot(m.alpha, v_i, p_i)',
integral, omega_i, m=mat, v_i=v_i, p_i=p_i)
t21 = Term.new('dw_biot(m.alpha, u_i, q_i)',
integral, omega_i, m=mat, u_i=u_i, q_i=q_i)
t22 = Term.new('dw_laplace(m.k, q_i, p_i)',
integral, omega_i, m=mat, q_i=q_i, p_i=p_i)
eq1 = Equation('eq1', t11 - t12)
eq2 = Equation('eq1', t21 + t22)
eqs = Equations([eq1, eq2])
ebc1 = EssentialBC('ebc1', gamma1_i, {'u_i.all' : 0.0})
ebc2 = EssentialBC('ebc2', gamma2_i, {'u_i.0' : 0.05})
def bc_fun(ts, coors, **kwargs):
val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x))
return val
fun = Function('bc_fun', bc_fun)
ebc3 = EssentialBC('ebc3', gamma3_i, {'p_i.all' : fun})
pb = Problem('problem_i', equations=eqs, active_only=False)
pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3]))
pb.update_materials()
return pb
示例4: main
# 需要导入模块: from sfepy.discrete.fem import Mesh [as 别名]
# 或者: from sfepy.discrete.fem.Mesh import from_region [as 别名]
def main():
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('-s', '--scale', metavar='scale',
action='store', dest='scale',
default=None, help=helps['scale'])
parser.add_argument('-c', '--center', metavar='center',
action='store', dest='center',
default=None, help=helps['center'])
parser.add_argument('-r', '--refine', metavar='level',
action='store', type=int, dest='refine',
default=0, help=helps['refine'])
parser.add_argument('-f', '--format', metavar='format',
action='store', type=str, dest='format',
default=None, help=helps['format'])
parser.add_argument('-l', '--list', action='store_true',
dest='list', help=helps['list'])
parser.add_argument('-m', '--merge', action='store_true',
dest='merge', help=helps['merge'])
parser.add_argument('-t', '--tri-tetra', action='store_true',
dest='tri_tetra', help=helps['tri-tetra'])
parser.add_argument('-2', '--2d', action='store_true',
dest='force_2d', help=helps['2d'])
parser.add_argument('--save-per-mat', action='store_true',
dest='save_per_mat', help=helps['save-per-mat'])
parser.add_argument('--remesh', metavar='options',
action='store', dest='remesh',
default=None, help=helps['remesh'])
parser.add_argument('filename_in')
parser.add_argument('filename_out')
options = parser.parse_args()
if options.list:
output('Supported readable mesh formats:')
output('--------------------------------')
output_mesh_formats('r')
output('')
output('Supported writable mesh formats:')
output('--------------------------------')
output_mesh_formats('w')
sys.exit(0)
scale = _parse_val_or_vec(options.scale, 'scale', parser)
center = _parse_val_or_vec(options.center, 'center', parser)
filename_in = options.filename_in
filename_out = options.filename_out
if options.remesh:
import tempfile
import shlex
import subprocess
dirname = tempfile.mkdtemp()
is_surface = options.remesh.startswith('q')
if is_surface:
mesh = Mesh.from_file(filename_in)
domain = FEDomain(mesh.name, mesh)
region = domain.create_region('surf', 'vertices of surface',
'facet')
surf_mesh = Mesh.from_region(region, mesh,
localize=True, is_surface=True)
filename = op.join(dirname, 'surf.mesh')
surf_mesh.write(filename, io='auto')
else:
import shutil
shutil.copy(filename_in, dirname)
filename = op.join(dirname, op.basename(filename_in))
qopts = ''.join(options.remesh.split()) # Remove spaces.
command = 'tetgen -BFENkACp%s %s' % (qopts, filename)
args = shlex.split(command)
subprocess.call(args)
root, ext = op.splitext(filename)
mesh = Mesh.from_file(root + '.1.vtk')
remove_files(dirname)
else:
mesh = Mesh.from_file(filename_in)
if options.force_2d:
data = list(mesh._get_io_data())
data[0] = data[0][:, :2]
mesh = Mesh.from_data(mesh.name, *data)
if scale is not None:
if len(scale) == 1:
tr = nm.eye(mesh.dim, dtype=nm.float64) * scale
elif len(scale) == mesh.dim:
tr = nm.diag(scale)
else:
raise ValueError('bad scale! (%s)' % scale)
mesh.transform_coors(tr)
#.........这里部分代码省略.........
示例5: main
# 需要导入模块: from sfepy.discrete.fem import Mesh [as 别名]
# 或者: from sfepy.discrete.fem.Mesh import from_region [as 别名]
def main():
parser = OptionParser(usage=usage, version="%prog " + sfepy.__version__)
parser.add_option("-m", "--mesh",
action="store_true", dest="save_mesh",
default=False,
help="save surface mesh")
parser.add_option("-n", "--no-surface",
action="store_true", dest="no_surface",
default=False,
help="do not output surface [default: %default]")
(options, args) = parser.parse_args()
if (len(args) == 2):
filename_in = args[0];
filename_out = args[1];
else:
parser.print_help(),
return
if (filename_in == '-'):
file_in = sys.stdin
else:
file_in = open(filename_in, "r");
mesh = Mesh.from_file(filename_in)
if (filename_in != '-'):
file_in.close()
domain = FEDomain('domain', mesh)
if options.save_mesh:
region = domain.create_region('surf', 'vertices of surface', 'facet')
surf_mesh = Mesh.from_region(region, mesh,
localize=True, is_surface=True)
aux = edit_filename(filename_in, prefix='surf_', new_ext='.mesh')
surf_mesh.write(aux, io='auto')
if domain.has_faces():
domain.fix_element_orientation()
lst, surf_faces = get_surface_faces(domain)
if options.no_surface:
return
gr_s = surface_graph(surf_faces, mesh.n_nod)
n_comp, comps = surface_components(gr_s, surf_faces)
output('number of surface components:', n_comp)
ccs, comps = comps, nm.zeros((0,1), nm.int32)
for cc in ccs:
comps = nm.concatenate((comps, cc[:,nm.newaxis]), 0)
out = nm.concatenate((lst, comps), 1)
if (filename_out == '-'):
file_out = sys.stdout
else:
file_out = open(filename_out, "w");
for row in out:
file_out.write('%d %d %d\n' % (row[0], row[1], row[2]))
if (filename_out != '-'):
file_out.close()
示例6: main
# 需要导入模块: from sfepy.discrete.fem import Mesh [as 别名]
# 或者: from sfepy.discrete.fem.Mesh import from_region [as 别名]
def main():
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument("--version", action="version",
version="%(prog)s " + sfepy.__version__)
parser.add_argument("-m", "--mesh",
action="store_true", dest="save_mesh",
default=False,
help="save surface mesh")
parser.add_argument("-n", "--no-surface",
action="store_true", dest="no_surface",
default=False,
help="do not output surface [default: %(default)s]")
parser.add_argument('filename_in', help="'-' is for stdin")
parser.add_argument('filename_out', help="'-' is for stdout")
options = parser.parse_args()
filename_in = options.filename_in
filename_out = options.filename_out
if (filename_in == '-'):
file_in = sys.stdin
else:
file_in = open(filename_in, "r")
mesh = Mesh.from_file(filename_in)
if (filename_in != '-'):
file_in.close()
domain = FEDomain('domain', mesh)
if options.save_mesh:
region = domain.create_region('surf', 'vertices of surface', 'facet')
surf_mesh = Mesh.from_region(region, mesh,
localize=True, is_surface=True)
aux = edit_filename(filename_in, prefix='surf_', new_ext='.mesh')
surf_mesh.write(aux, io='auto')
if domain.has_faces():
domain.fix_element_orientation()
lst, surf_faces = get_surface_faces(domain)
if options.no_surface:
return
gr_s = surface_graph(surf_faces, mesh.n_nod)
n_comp, comps = surface_components(gr_s, surf_faces)
output('number of surface components:', n_comp)
ccs, comps = comps, nm.zeros((0,1), nm.int32)
for cc in ccs:
comps = nm.concatenate((comps, cc[:,nm.newaxis]), 0)
out = nm.concatenate((lst, comps), 1)
if (filename_out == '-'):
file_out = sys.stdout
else:
file_out = open(filename_out, "w")
for row in out:
file_out.write('%d %d %d\n' % (row[0], row[1], row[2]))
if (filename_out != '-'):
file_out.close()
示例7: create_local_problem
# 需要导入模块: from sfepy.discrete.fem import Mesh [as 别名]
# 或者: from sfepy.discrete.fem.Mesh import from_region [as 别名]
def create_local_problem(omega_gi, orders):
"""
Local problem definition using a domain corresponding to the global region
`omega_gi`.
"""
order_u, order_p = orders
mesh = omega_gi.domain.mesh
# All tasks have the whole mesh.
bbox = mesh.get_bounding_box()
min_x, max_x = bbox[:, 0]
eps_x = 1e-8 * (max_x - min_x)
min_y, max_y = bbox[:, 1]
eps_y = 1e-8 * (max_y - min_y)
mesh_i = Mesh.from_region(omega_gi, mesh, localize=True)
domain_i = FEDomain("domain_i", mesh_i)
omega_i = domain_i.create_region("Omega", "all")
gamma1_i = domain_i.create_region("Gamma1", "vertices in (x < %.10f)" % (min_x + eps_x), "facet", allow_empty=True)
gamma2_i = domain_i.create_region("Gamma2", "vertices in (x > %.10f)" % (max_x - eps_x), "facet", allow_empty=True)
gamma3_i = domain_i.create_region("Gamma3", "vertices in (y < %.10f)" % (min_y + eps_y), "facet", allow_empty=True)
field1_i = Field.from_args("fu", nm.float64, mesh.dim, omega_i, approx_order=order_u)
field2_i = Field.from_args("fp", nm.float64, 1, omega_i, approx_order=order_p)
output("field 1: number of local DOFs:", field1_i.n_nod)
output("field 2: number of local DOFs:", field2_i.n_nod)
u_i = FieldVariable("u_i", "unknown", field1_i, order=0)
v_i = FieldVariable("v_i", "test", field1_i, primary_var_name="u_i")
p_i = FieldVariable("p_i", "unknown", field2_i, order=1)
q_i = FieldVariable("q_i", "test", field2_i, primary_var_name="p_i")
if mesh.dim == 2:
alpha = 1e2 * nm.array([[0.132], [0.132], [0.092]])
else:
alpha = 1e2 * nm.array([[0.132], [0.132], [0.132], [0.092], [0.092], [0.092]])
mat = Material("m", lam=10, mu=5, k=1, alpha=alpha)
integral = Integral("i", order=2 * (max(order_u, order_p)))
t11 = Term.new("dw_lin_elastic_iso(m.lam, m.mu, v_i, u_i)", integral, omega_i, m=mat, v_i=v_i, u_i=u_i)
t12 = Term.new("dw_biot(m.alpha, v_i, p_i)", integral, omega_i, m=mat, v_i=v_i, p_i=p_i)
t21 = Term.new("dw_biot(m.alpha, u_i, q_i)", integral, omega_i, m=mat, u_i=u_i, q_i=q_i)
t22 = Term.new("dw_laplace(m.k, q_i, p_i)", integral, omega_i, m=mat, q_i=q_i, p_i=p_i)
eq1 = Equation("eq1", t11 - t12)
eq2 = Equation("eq1", t21 + t22)
eqs = Equations([eq1, eq2])
ebc1 = EssentialBC("ebc1", gamma1_i, {"u_i.all": 0.0})
ebc2 = EssentialBC("ebc2", gamma2_i, {"u_i.0": 0.05})
def bc_fun(ts, coors, **kwargs):
val = 0.3 * nm.sin(4 * nm.pi * (coors[:, 0] - min_x) / (max_x - min_x))
return val
fun = Function("bc_fun", bc_fun)
ebc3 = EssentialBC("ebc3", gamma3_i, {"p_i.all": fun})
pb = Problem("problem_i", equations=eqs, active_only=False)
pb.time_update(ebcs=Conditions([ebc1, ebc2, ebc3]))
pb.update_materials()
return pb