本文整理汇总了Python中sfepy.discrete.fem.Mesh类的典型用法代码示例。如果您正苦于以下问题:Python Mesh类的具体用法?Python Mesh怎么用?Python Mesh使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Mesh类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_interpolation
def test_interpolation(self):
from sfepy import data_dir
from sfepy.discrete.fem import Mesh
from sfepy.linalg import make_axis_rotation_matrix
fname = in_dir(self.options.out_dir)
meshes = {
'tp' : Mesh.from_file(data_dir + '/meshes/3d/block.mesh'),
'si' : Mesh.from_file(data_dir + '/meshes/3d/cylinder.mesh'),
}
datas = gen_datas(meshes)
for field_name in ['scalar_si', 'vector_si', 'scalar_tp', 'vector_tp']:
m1 = meshes[field_name[-2:]]
for ia, angle in enumerate(nm.linspace(0.0, nm.pi, 11)):
self.report('%s: %d. angle: %f' % (field_name, ia, angle))
shift = [0.0, 0.0, 0.0]
mtx = make_axis_rotation_matrix([0, 1, 0], angle)
m2 = m1.copy('rotated mesh')
m2.transform_coors(mtx)
data = datas[field_name]
u1, u2 = do_interpolation(m2, m1, data, field_name)
if ia == 0:
u1.save_as_mesh(fname('test_mesh_interp_%s_u1.vtk'
% field_name))
u2.save_as_mesh(fname('test_mesh_interp_%s_u2.%03d.vtk'
% (field_name, ia)))
return True
示例2: test_write_read_meshes
def test_write_read_meshes(self):
"""
Try to write and then read all supported formats.
"""
from sfepy.discrete.fem import Mesh
from sfepy.discrete.fem.meshio import (supported_formats,
supported_capabilities)
conf_dir = op.dirname(__file__)
mesh0 = Mesh.from_file(data_dir
+ '/meshes/various_formats/small3d.mesh',
prefix_dir=conf_dir)
oks = []
for suffix, format_ in six.iteritems(supported_formats):
if isinstance(format_, tuple):
continue
if 'w' not in supported_capabilities[format_]: continue
filename = op.join(self.options.out_dir, 'test_mesh_wr' + suffix)
self.report('%s format: %s' % (suffix, filename))
mesh0.write(filename, io='auto')
mesh1 = Mesh.from_file(filename)
oks.extend(self._compare_meshes(mesh0, mesh1))
return sum(oks) == len(oks)
示例3: main
def main():
parser = ArgumentParser(description=__doc__.rstrip(),
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('filename', help=helps['filename'])
parser.add_argument('-d', '--detailed',
action='store_true', dest='detailed',
default=False, help=helps['detailed'])
options = parser.parse_args()
mesh = Mesh.from_file(options.filename)
output(mesh.cmesh)
output('element types:', mesh.descs)
output('nodal BCs:', sorted(mesh.nodal_bcs.keys()))
bbox = mesh.get_bounding_box()
output('bounding box:\n%s'
% '\n'.join('%s: [%14.7e, %14.7e]' % (name, bbox[0, ii], bbox[1, ii])
for ii, name in enumerate('xyz'[:mesh.dim])))
output('centre: [%s]'
% ', '.join('%14.7e' % ii for ii in 0.5 * (bbox[0] + bbox[1])))
output('coordinates mean: [%s]'
% ', '.join('%14.7e' % ii for ii in mesh.coors.mean(0)))
if not options.detailed: return
domain = FEDomain(mesh.name, mesh)
for dim in range(1, mesh.cmesh.tdim + 1):
volumes = mesh.cmesh.get_volumes(dim)
output('volumes of %d %dD entities:\nmin: %.7e mean: %.7e median:'
' %.7e max: %.7e'
% (mesh.cmesh.num[dim], dim, volumes.min(), volumes.mean(),
nm.median(volumes), volumes.max()))
euler = lambda mesh: nm.dot(mesh.cmesh.num, [1, -1, 1, -1])
ec = euler(mesh)
output('Euler characteristic:', ec)
graph = mesh.create_conn_graph(verbose=False)
n_comp, _ = graph_components(graph.shape[0], graph.indptr, graph.indices)
output('number of connected components:', n_comp)
if mesh.dim > 1:
region = domain.create_region('surf', 'vertices of surface', 'facet')
surf_mesh = Mesh.from_region(region, mesh,
localize=True, is_surface=True)
FEDomain(surf_mesh.name, surf_mesh) # Calls CMesh.setup_entities().
sec = euler(surf_mesh)
output('surface Euler characteristic:', sec)
if mesh.dim == 3:
output('surface genus:', (2.0 - sec) / 2.0)
surf_graph = surf_mesh.create_conn_graph(verbose=False)
n_comp, _ = graph_components(surf_graph.shape[0],
surf_graph.indptr, surf_graph.indices)
output('number of connected surface components:', n_comp)
示例4: refine_region
def refine_region(domain0, region0, region1):
"""
Coarse cell sub_cells[ii, 0] in mesh0 is split into sub_cells[ii, 1:] in
mesh1.
The new fine cells are interleaved among the original coarse cells so that
the indices of the coarse cells do not change.
The cell groups are preserved. The vertex groups are preserved only in the
coarse (non-refined) cells.
"""
if region1 is None:
return domain0, None
mesh0 = domain0.mesh
mesh1 = Mesh.from_region(region1, mesh0)
domain1 = FEDomain('d', mesh1)
domain1r = domain1.refine()
mesh1r = domain1r.mesh
n_cell = region1.shape.n_cell
n_sub = 4 if mesh0.cmesh.tdim == 2 else 8
sub_cells = nm.empty((n_cell, n_sub + 1), dtype=nm.uint32)
sub_cells[:, 0] = region1.cells
sub_cells[:, 1] = region1.cells
aux = nm.arange((n_sub - 1) * n_cell, dtype=nm.uint32)
sub_cells[:, 2:] = mesh0.n_el + aux.reshape((n_cell, -1))
coors0, vgs0, conns0, mat_ids0, descs0 = mesh0._get_io_data()
coors, vgs, _conns, _mat_ids, descs = mesh1r._get_io_data()
# Preserve vertex groups of non-refined cells.
vgs[:len(vgs0)] = vgs0
def _interleave_refined(c0, c1):
if c1.ndim == 1:
c0 = c0[:, None]
c1 = c1[:, None]
n_row, n_col = c1.shape
n_new = region0.shape.n_cell + n_row
out = nm.empty((n_new, n_col), dtype=c0.dtype)
out[region0.cells] = c0[region0.cells]
out[region1.cells] = c1[::n_sub]
aux = c1.reshape((-1, n_col * n_sub))
out[mesh0.n_el:] = aux[:, n_col:].reshape((-1, n_col))
return out
conn = _interleave_refined(conns0[0], _conns[0])
mat_id = _interleave_refined(mat_ids0[0], _mat_ids[0]).squeeze()
mesh = Mesh.from_data('a', coors, vgs, [conn], [mat_id], descs)
domain = FEDomain('d', mesh)
return domain, sub_cells
示例5: test_interpolation_two_meshes
def test_interpolation_two_meshes(self):
from sfepy import data_dir
from sfepy.discrete import Variables
from sfepy.discrete.fem import Mesh, FEDomain, Field
m1 = Mesh.from_file(data_dir + '/meshes/3d/block.mesh')
m2 = Mesh.from_file(data_dir + '/meshes/3d/cube_medium_tetra.mesh')
m2.coors[:] *= 2.0
bbox = m1.get_bounding_box()
dd = bbox[1,:] - bbox[0,:]
data = nm.sin(4.0 * nm.pi * m1.coors[:,0:1] / dd[0]) \
* nm.cos(4.0 * nm.pi * m1.coors[:,1:2] / dd[1])
variables1 = {
'u' : ('unknown field', 'scalar_tp', 0),
'v' : ('test field', 'scalar_tp', 'u'),
}
variables2 = {
'u' : ('unknown field', 'scalar_si', 0),
'v' : ('test field', 'scalar_si', 'u'),
}
d1 = FEDomain('d1', m1)
omega1 = d1.create_region('Omega', 'all')
field1 = Field.from_args('scalar_tp', nm.float64, (1,1), omega1,
approx_order=1)
ff1 = {field1.name : field1}
d2 = FEDomain('d2', m2)
omega2 = d2.create_region('Omega', 'all')
field2 = Field.from_args('scalar_si', nm.float64, (1,1), omega2,
approx_order=0)
ff2 = {field2.name : field2}
vv1 = Variables.from_conf(transform_variables(variables1), ff1)
u1 = vv1['u']
u1.set_from_mesh_vertices(data)
vv2 = Variables.from_conf(transform_variables(variables2), ff2)
u2 = vv2['u']
# Performs interpolation, if other field differs from self.field
# or, in particular, is defined on a different mesh.
u2.set_from_other(u1, strategy='interpolation', close_limit=0.1)
fname = in_dir(self.options.out_dir)
u1.save_as_mesh(fname('test_mesh_interp_block_scalar.vtk'))
u2.save_as_mesh(fname('test_mesh_interp_cube_scalar.vtk'))
return True
示例6: __init__
def __init__(self, name, nurbs, bmesh, regions=None, **kwargs):
"""
Create an IGA domain.
Parameters
----------
name : str
The domain name.
"""
Domain.__init__(self, name, nurbs=nurbs, bmesh=bmesh, regions=regions,
**kwargs)
from sfepy.discrete.fem.geometry_element import create_geometry_elements
from sfepy.discrete.fem import Mesh
from sfepy.discrete.fem.utils import prepare_remap
tconn = iga.get_bezier_topology(bmesh.conn, nurbs.degrees)
itc = nm.unique(tconn)
remap = prepare_remap(itc, bmesh.conn.max() + 1)
ltcoors = bmesh.cps[itc]
ltconn = remap[tconn]
n_nod, dim = ltcoors.shape
n_el = ltconn.shape[0]
self.shape = Struct(n_nod=n_nod, dim=dim, tdim=0, n_el=n_el)
desc = '%d_%d' % (dim, bmesh.conn.shape[1])
mat_id = nm.zeros(bmesh.conn.shape[0], dtype=nm.int32)
eval_mesh = Mesh.from_data(self.name + '_eval', nurbs.cps, None,
[nurbs.conn], [mat_id], [desc])
self.eval_mesh = eval_mesh
desc = '%d_%d' % (dim, 2**dim)
mat_id = nm.zeros(ltconn.shape[0], dtype=nm.int32)
self.mesh = Mesh.from_data(self.name + '_topo', ltcoors, None, [ltconn],
[mat_id], [desc])
self.cmesh = self.mesh.cmesh
gels = create_geometry_elements()
self.cmesh.set_local_entities(gels)
self.cmesh.setup_entities()
self.shape.tdim = self.cmesh.tdim
self.gel = gels[desc]
if regions is not None:
self.vertex_set_bcs = {}
for key, val in self.regions.iteritems():
self.vertex_set_bcs[key] = remap[val]
self.reset_regions()
示例7: from_conf
def from_conf(conf, options):
from sfepy import data_dir
from sfepy.discrete.fem import Mesh, FEDomain
from sfepy.discrete import Functions
mesh = Mesh("test mesh", data_dir + "/meshes/various_formats/abaqus_tet.inp")
mesh.nodal_bcs["set0"] = [0, 7]
domain = FEDomain("test domain", mesh)
conf_functions = {"get_vertices": (get_vertices,), "get_cells": (get_cells,)}
functions = Functions.from_conf(transform_functions(conf_functions))
test = Test(conf=conf, options=options, domain=domain, functions=functions)
return test
示例8: test_rcm
def test_rcm(self):
from sfepy import data_dir
from sfepy.linalg import rcm, permute_in_place, save_sparse_txt
from sfepy.discrete.fem import Mesh
filename = data_dir + '/meshes/2d/special/square_triquad.mesh'
self.report('testing reversed Cuthill-McKee permutation')
conf_dir = op.dirname(__file__)
mesh = Mesh.from_file(filename, prefix_dir=conf_dir)
graph = mesh.create_conn_graph()
graph0 = graph.copy()
save_sparse_txt(op.join(self.options.out_dir, 'test_rcm_graph_orig'),
graph, fmt='%d %d %d\n')
perm = rcm(graph)
permute_in_place(graph, perm)
save_sparse_txt(op.join(self.options.out_dir, 'test_rcm_graph_rcm'),
graph, fmt='%d %d %d\n')
assert_((graph0.indptr != graph.indptr).any())
assert_((graph0.indices != graph.indices).any())
permute_in_place(graph, perm, inverse=True)
save_sparse_txt(op.join(self.options.out_dir, 'test_rcm_graph_rcm_inv'),
graph, fmt='%d %d %d\n')
assert_((graph0.indptr == graph.indptr).all())
assert_((graph0.indices == graph.indices).all())
return True
示例9: _get_bqp
def _get_bqp(geometry, order):
from sfepy.discrete import Integral
from sfepy.discrete.fem.geometry_element import GeometryElement
from sfepy.discrete.fem import Mesh, FEDomain, Field
gel = GeometryElement(geometry)
mesh = Mesh.from_data('aux', gel.coors, None,
[gel.conn[None, :]], [[0]], [geometry])
domain = FEDomain('domain', mesh)
omega = domain.create_region('Omega', 'all')
surf = domain.create_region('Surf', 'vertices of surface', 'facet')
field = Field.from_args('f', nm.float64, shape=1,
region=omega, approx_order=1)
field.setup_surface_data(surf)
integral = Integral('aux', order=order)
field.create_bqp('Surf', integral)
sd = field.surface_data['Surf']
qp = field.qp_coors[(integral.order, sd.bkey)]
output('geometry:', geometry, 'order:', order, 'num. points:',
qp.vals.shape[1], 'true_order:',
integral.qps[gel.surface_facet_name].order)
output('min. weight:', qp.weights.min())
output('max. weight:', qp.weights.max())
return (gel, qp.vals.reshape((-1, mesh.dim)),
nm.tile(qp.weights, qp.vals.shape[0]))
示例10: main
def main():
parser = ArgumentParser(description=__doc__)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('--eps', action='store', dest='eps',
default=1e-12, help=helps['eps'])
parser.add_argument('-o', '--filename-out',
action='store', dest='filename_out',
default=None, help=helps['filename-out'])
parser.add_argument('filename')
options = parser.parse_args()
filename = options.filename
mesh = Mesh.from_file(filename)
mesh_out = extract_edges(mesh, eps=float(options.eps))
mesh_out = merge_lines(mesh_out)
filename_out = options.filename_out
if filename_out is None:
filename_out = edit_filename(filename, prefix='edge_', new_ext='.vtk')
output('Outline mesh - vertices: %d, edges: %d, output filename: %s'
% (mesh_out[0].shape[0], mesh_out[2][0].shape[0], filename_out))
# hack to write '3_2' elements - edges
io = VTKMeshIO(None)
aux_mesh = Struct()
aux_mesh._get_io_data = lambda: mesh_out
aux_mesh.n_el = mesh_out[2][0].shape[0]
io.write(filename_out, aux_mesh)
示例11: main
def main():
parser = ArgumentParser(description=__doc__,
formatter_class=RawDescriptionHelpFormatter)
parser.add_argument('mesh_dir')
options = parser.parse_args()
mesh_dir = options.mesh_dir
mesh_files = []
for (dirpath, dirnames, filenames) in os.walk(mesh_dir):
for ii in filenames:
_, ext = os.path.splitext(ii)
if ext.lower() in ['.mesh', '.vtk']:
mesh_files.append(dirpath + os.path.sep + ii)
for ii in mesh_files:
base, ext = os.path.splitext(ii)
fname_out = base + '.png'
if ext == '.mesh':
fname_in = 'aux.vtk'
mesh = Mesh.from_file(ii)
mesh.write(fname_in, io='auto')
else:
fname_in = ii
print(('writing %s...' % fname_out))
gen_shot(fname_in, fname_out)
示例12: test_read_meshes
def test_read_meshes(self):
"""Try to read all listed meshes."""
from sfepy.discrete.fem import Mesh
conf_dir = op.dirname(__file__)
meshes = {}
for ii, filename in enumerate(filename_meshes):
self.report("%d. mesh: %s" % (ii + 1, filename))
mesh = Mesh.from_file(filename, prefix_dir=conf_dir)
assert_(mesh.dim == (mesh.coors.shape[1]))
assert_(mesh.n_nod == (mesh.coors.shape[0]))
assert_(mesh.n_nod == (mesh.ngroups.shape[0]))
assert_(mesh.n_el == sum(mesh.n_els))
for ig, conn in enumerate(mesh.conns):
assert_(conn.shape[0] == len(mesh.mat_ids[ig]))
assert_(conn.shape[0] == mesh.n_els[ig])
assert_(conn.shape[1] == mesh.n_e_ps[ig])
self.report("read ok")
meshes[filename] = mesh
self.meshes = meshes
return True
示例13: main
def main():
parser = OptionParser(usage=usage)
(options, args) = parser.parse_args()
if len(args) != 1:
parser.print_help()
sys.exit(1)
mesh_dir = args[0]
mesh_files = []
for (dirpath, dirnames, filenames) in os.walk(mesh_dir):
for ii in filenames:
_, ext = os.path.splitext(ii)
if ext.lower() in ['.mesh', '.vtk']:
mesh_files.append(dirpath + os.path.sep + ii)
for ii in mesh_files:
base, ext = os.path.splitext(ii)
fname_out = base + '.png'
if ext == '.mesh':
fname_in = 'aux.vtk'
mesh = Mesh.from_file(ii)
mesh.write(fname_in, io='auto')
else:
fname_in = ii
print('writing %s...' % fname_out)
gen_shot(fname_in, fname_out)
示例14: main
def main():
parser = ArgumentParser(description=__doc__)
parser.add_argument('--version', action='version', version='%(prog)s')
parser.add_argument('filename')
options = parser.parse_args()
filename = options.filename
mesh = Mesh.from_file(filename)
output('Mesh:')
output(' dimension: %d, vertices: %d, elements: %d'
% (mesh.dim, mesh.n_nod, mesh.n_el))
domain = FEDomain('domain', mesh)
output(domain.cmesh)
domain.cmesh.cprint(1)
dim = domain.cmesh.dim
entities_opts = [
{'color' : 'k', 'label_global' : 12, 'label_local' : 8},
{'color' : 'b', 'label_global' : 12, 'label_local' : 8},
{'color' : 'g', 'label_global' : 12, 'label_local' : 8},
{'color' : 'r', 'label_global' : 12},
]
if dim == 2: entities_opts.pop(2)
pc.plot_cmesh(None, domain.cmesh,
wireframe_opts = {'color' : 'k'},
entities_opts=entities_opts)
plt.show()
示例15: gen_two_bodies
def gen_two_bodies(dims0, shape0, centre0, dims1, shape1, centre1, shift1):
from sfepy.discrete.fem import Mesh
from sfepy.mesh.mesh_generators import gen_block_mesh
m0 = gen_block_mesh(dims0, shape0, centre0)
m1 = gen_block_mesh(dims1, shape1, centre1)
coors = nm.concatenate((m0.coors, m1.coors + shift1), axis=0)
desc = m0.descs[0]
c0 = m0.get_conn(desc)
c1 = m1.get_conn(desc)
conn = nm.concatenate((c0, c1 + m0.n_nod), axis=0)
ngroups = nm.zeros(coors.shape[0], dtype=nm.int32)
ngroups[m0.n_nod:] = 1
mat_id = nm.zeros(conn.shape[0], dtype=nm.int32)
mat_id[m0.n_el:] = 1
name = 'two_bodies.mesh'
mesh = Mesh.from_data(name, coors, ngroups, [conn], [mat_id], m0.descs)
mesh.write(name, io='auto')
return mesh