当前位置: 首页>>代码示例>>Python>>正文


Python IOtools.tocsv_lst方法代码示例

本文整理汇总了Python中sentimentfinding.IOtools.tocsv_lst方法的典型用法代码示例。如果您正苦于以下问题:Python IOtools.tocsv_lst方法的具体用法?Python IOtools.tocsv_lst怎么用?Python IOtools.tocsv_lst使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sentimentfinding.IOtools的用法示例。


在下文中一共展示了IOtools.tocsv_lst方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: generate_user_table

# 需要导入模块: from sentimentfinding import IOtools [as 别名]
# 或者: from sentimentfinding.IOtools import tocsv_lst [as 别名]
 def generate_user_table(self, tablefolder, userlist=None):
     if userlist is None:
         userlist = self.coders
     
     usertable = [("uid", "uname", "lastevaluationid")]
     for i,u in enumerate(userlist):
         usertable.append((i, u, -1))
     
     tpath = os.path.join(tablefolder, "users.csv")
     IOtools.tocsv_lst(usertable, tpath)
     '''
开发者ID:dicleoztur,项目名称:subjectivity_detection,代码行数:13,代码来源:annotationbuilder_old.py

示例2: generate_evalutation_table

# 需要导入模块: from sentimentfinding import IOtools [as 别名]
# 或者: from sentimentfinding.IOtools import tocsv_lst [as 别名]
 def generate_evalutation_table(self, tablefolder, usertextpairs):
     evaluationtable = [("eid", "userid", "questionname", "answer", "isanswered", "qorder")]
     
     userids = [userid for userid,_ in usertextpairs]
     uqorderdct = initialize_dict(userids)
     
     for i,(uid,qname) in enumerate(usertextpairs):
         qorder = uqorderdct[uid]
         evaluationtable.append((i, uid, qname, -100, 0, qorder))
         uqorderdct[uid] = uqorderdct[uid] + 1
         
     tpath = os.path.join(tablefolder, "evaluations.csv")
     IOtools.tocsv_lst(evaluationtable, tpath)
开发者ID:dicleoztur,项目名称:subjectivity_detection,代码行数:15,代码来源:annotationbuilder_old.py

示例3: generate_question_table

# 需要导入模块: from sentimentfinding import IOtools [as 别名]
# 或者: from sentimentfinding.IOtools import tocsv_lst [as 别名]
 def generate_question_table(self, tablefolder, textindices):
     df = IOtools.readcsv(self.corpuspath)
     
     questiontable = [("qid", "qname", "qtitle", "qcontent")]
     
     for i,textindex in enumerate(textindices):
         resourcename = df.loc[textindex, "resource"]
         orgcatname = df.loc[textindex, "originalcatname"]
         catname = df.loc[textindex, "category"]
         textid = df.loc[textindex, "newsid"]
         textid = str(textid).split(".")[0]
         print textindex, type(textindex), textid, type(textid)
         questionname = resourcename + "-" + catname + "-" + textid
         
         filepath = os.path.join(metacorpus.rawcorpuspath, resourcename, orgcatname, textid+metacorpus.itemext)
         title, content = extractnewsmetadata.get_news_article(filepath)
         questiontable.append((i, questionname, title, content))
      
     tpath = os.path.join(tablefolder, "questions.csv")
     IOtools.tocsv_lst(questiontable, tpath)
开发者ID:dicleoztur,项目名称:subjectivity_detection,代码行数:22,代码来源:annotationbuilder_old.py

示例4: conduct_cross_validation_notest

# 需要导入模块: from sentimentfinding import IOtools [as 别名]
# 或者: from sentimentfinding.IOtools import tocsv_lst [as 别名]

#.........这里部分代码省略.........
                        nc = int(nc)
                                       
                        sp4 = IOtools.ensure_dir(os.path.join(sp3, unionname))
                        
                        
                        ylabelspath = os.path.join(lp2, metacorpus.labelsfilename+".csv")
                        y = IOtools.readcsv(ylabelspath, True)                
                        labelitems = y.groupby("answer").groups  # labelitems = {label : [newsid]}
                        
                        countlabels = listutils.initialize_dict(labelitems.keys(), val=0.0)
                        
                        '''  skip test division
                        # record test instances for guranteeing
                        testinstances = listutils.initialize_dict(labelitems.keys(), val=[])
                        traininstances = listutils.initialize_dict(labelitems.keys(), val=[])
                        
                        for label, instanceids in labelitems.iteritems():
                            ntest = utils.get_nsplit(len(instanceids), metaexperimentation.testpercentage)
                            testinstances[label] = instanceids[-ntest:]
                            traininstances[label] = instanceids[:-ntest]
                        
                        IOtools.todisc_json(os.path.join(sp4, "test_instances"), testinstances)
                        IOtools.todisc_json(os.path.join(sp4, "train_instances"), traininstances)
                        '''
                        
                        checktrs = []
                        checktss = []
                        
                        intersectstr = []
                        intersectsts = []
                             
                        validstart = 0
                        for foldno in range(k):
                            # both will contain (fileid, label) 
                            trainitems = []  
                            testitems = []
                               
                            for label, fileids in labelitems.iteritems():
                                nvalid = utils.get_nsplit(len(fileids), metaexperimentation.validationpercentage)
                                #ntest = utils.get_nsplit(len(fileids), metaexperimentation.testpercentage)
                                
                                '''
                                print " LABEL: ",label
                                print "  nvalid: ",nvalid,"  ntest: ",ntest
                                '''
                                
                                instanceids = fileids   #fileids[:-ntest]
                                validstart = (foldno * (nvalid + 1)) % len(fileids)
                                validfinish = (validstart + nvalid) % len(fileids)
                                trainids = utils.gettrainset(instanceids, validstart, validfinish)  # fileids to be included in the train set
                                testids = utils.gettestset(instanceids, validstart, validfinish)  # fileids to be included in the test set
                                trainitems.extend([(fileid, label) for fileid in trainids])
                                testitems.extend([(fileid, label) for fileid in testids])

                                '''
                                print "    ntrain: ",len(trainids)
                                print "    ntestset: ",len(testids)
                                
                                
                                if len(trainids) <= len(testids):
                                    print "*******  ",foldno,labelunion, label
                                '''
                                
                                # check file collision. completed and closed 12:43
                                '''
                                coltr = listutils.getintersectionoflists(checktrs, trainids)
                                colts = listutils.getintersectionoflists(checktss, testids)
                                
                                intersectstr.extend(coltr)
                                intersectsts.extend(colts)
                                '''
                    
                            '''
                            print i," ----- ",
                            print "  intersect-train: ",intersectstr,"  ** intersect-test : ",intersectsts
                            print
                            '''
                                
                            foldpath = IOtools.ensure_dir(os.path.join(sp4, "fold-"+str(foldno)))
                            
                            metaexperimentation.initialize_score_file(foldpath)
                            
                            IOtools.tocsv_lst(trainitems, os.path.join(foldpath, "trainitems.csv"))
                            IOtools.tocsv_lst(testitems, os.path.join(foldpath, "testitems.csv"))
                            
                            Xtrain, ytrain = utils.tuple2matrix(trainitems, Xpath)
                            Xtest, ytest = utils.tuple2matrix(testitems, Xpath)
                            
                            # classify
                            for model in models:
                                model.set_score_folder(foldpath)
                                model.apply_algorithms2(Xtrain, ytrain, Xtest, ytest)
                            
                            # random and frequency classification for baseline comparison
                            experimentname = "random"
                            distinctlabels = list(set(ytest))
                            ypred = [random.choice(distinctlabels) for _ in range(len(ytest))]
                            models[0].reportresults(ytest, ypred, experimentname)
                            
                            '''
开发者ID:dicleoztur,项目名称:subjectivity_detection,代码行数:104,代码来源:utils.py

示例5: find_word_matrices

# 需要导入模块: from sentimentfinding import IOtools [as 别名]
# 或者: from sentimentfinding.IOtools import tocsv_lst [as 别名]
 def find_word_matrices(self, newsidlist, processcontent=True, prepend="content"):
     dateroots = []
     datePOStag = []
     
     titleexclamation = [("newsid", "title_exclamation")]
     
     textPOStag = []
     textroots = [] 
     textrootsWpostag = []
     textliterals = []
     
     print prepend, " processing:"
     for newsid in newsidlist:
         print "newsid ",newsid
         filepath = extractnewsmetadata.newsid_to_filepath(newsid)
         content, title, date = extractnewsmetadata.get_news_article2(filepath)
         text = ""
         if processcontent:
             text = content
         else:
             text = title
             if "!" in title:
                 titleexclamation.append((newsid, 1))
             else:
                 titleexclamation.append((newsid, 0))
         
         words = texter.getwords(text)
         lemmata = SAKsParser.lemmatize_lexicon(words)
         for (literal, literalPOS, root, rootPOS) in lemmata:
             
             root = texter.cleanword(root)
             if (len(root) > 0) or (not root.isspace()):
                 #print root,
                 textPOStag.append((newsid, literalPOS))
                 textroots.append((newsid, root))
                 textrootsWpostag.append((newsid, root+" Wpostag "+rootPOS))
                 textliterals.append((newsid, literal+" Wpostag "+literalPOS))
                 dateroots.append((date, root))
                 datePOStag.append((date, literalPOS))
     
       
     cfd_dateroots = ConditionalFreqDist(dateroots)
     cfd_datepostag = ConditionalFreqDist(datePOStag)
     cfd_textpostag = ConditionalFreqDist(textPOStag)
     cfd_textroots = ConditionalFreqDist(textroots)
     cfd_textrootWpostag = ConditionalFreqDist(textrootsWpostag)
     cfd_textliterals = ConditionalFreqDist(textliterals)
     
     print "some id's", cfd_textroots.conditions()
     
     cfd_roottext = ConditionalFreqDist((word, docid) for docid in cfd_textroots.conditions()
                                        for word in list(cfd_textroots[docid])) 
             
     
     # cfd to csv  conditems as cols duzelt:
     csvpath = os.path.join(self.matrixpath, prepend+"-dateroot.csv")
     CFDhelpers.cfd_to_matrix(cfd_dateroots, csvpath)
     
     csvpath = os.path.join(self.matrixpath, prepend+"-datepostag.csv")
     CFDhelpers.cfd_to_matrix(cfd_datepostag, csvpath)
     
     csvpath = os.path.join(self.matrixpath, prepend+"-postagCOUNT.csv")
     CFDhelpers.cfd_to_matrix(cfd_textpostag, csvpath)
     
     termcountcsvpath = os.path.join(self.matrixpath, prepend+"termCOUNT.csv")
     CFDhelpers.cfd_to_matrix(cfd_textroots, termcountcsvpath)
     tfidfcsvpath = os.path.join(self.matrixpath, prepend+"termTFIDF.csv")
     texter.compute_tfidf_ondisc(termcountcsvpath, tfidfcsvpath)
             
     csvpath = os.path.join(self.matrixpath, prepend+"-rootcountindex.csv")
     CFDhelpers.cfd_to_matrix(cfd_roottext, csvpath)
     
     csvpath = os.path.join(self.matrixpath, prepend+"rootWpostagCOUNT.csv")
     CFDhelpers.cfd_to_matrix(cfd_textrootWpostag, csvpath)
     
     csvpath = os.path.join(self.matrixpath, prepend+"literalWpostagCOUNT.csv")
     CFDhelpers.cfd_to_matrix(cfd_textliterals, csvpath)
     
     
     # diger csv'lerden devam   6 Subat 05:42 uyuyuyuyuyuyu
     # kalklaklkalklklaklaklkal 15:32
     
     if not processcontent:
         print "keep exclamation !"
         IOtools.tocsv_lst(titleexclamation, os.path.join(self.matrixpath, prepend+"-exclamation.csv"))
开发者ID:dicleoztur,项目名称:subjectivity_detection,代码行数:87,代码来源:dataset_initializing2.py


注:本文中的sentimentfinding.IOtools.tocsv_lst方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。