当前位置: 首页>>代码示例>>Python>>正文


Python IOtools.readjson方法代码示例

本文整理汇总了Python中sentimentfinding.IOtools.readjson方法的典型用法代码示例。如果您正苦于以下问题:Python IOtools.readjson方法的具体用法?Python IOtools.readjson怎么用?Python IOtools.readjson使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sentimentfinding.IOtools的用法示例。


在下文中一共展示了IOtools.readjson方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: from sentimentfinding import IOtools [as 别名]
# 或者: from sentimentfinding.IOtools import readjson [as 别名]
def main(folder):
    singlejsonpath = os.path.join(folder, "singleannotation.json")
    doublejsonpath = os.path.join(folder, "doubleannotation.json")
    
    singleas = IOtools.readjson(singlejsonpath)
    doubleas = IOtools.readjson(doublejsonpath)
    
    
    print "Single assignments:"
    traversesingles(singleas)
    print "Double assignments:"
    traversedoubles(doubleas)
开发者ID:dicleoztur,项目名称:subjectivity_detection,代码行数:14,代码来源:testnumbers.py

示例2: generate_tables

# 需要导入模块: from sentimentfinding import IOtools [as 别名]
# 或者: from sentimentfinding.IOtools import readjson [as 别名]
 def generate_tables(self, singlejsonpath=None, doublejsonpath=None):
     
     if singlejsonpath is None:
         singlejsonpath=self.singles_jsonpath
     if doublejsonpath is None:
         doublejsonpath=self.doubles_jsonpath
         
     selectedindices = []
     user_textid = []
     df = IOtools.readcsv(self.corpuspath)
     df["annotator"] = ""
     
     # singles  
     single_assignments = IOtools.readjson(singlejsonpath)
     for userid, resourcedist in single_assignments.iteritems():
         for resourcename, catdist in resourcedist.iteritems():
             for catname, monthdist in catdist.iteritems():
                 for month, ntexts in monthdist.iteritems():
                     dfx = df[(df["resource"]==resourcename) & (df["category"]==catname) & (df["date"].str.startswith(month))]
                     for _ in range(ntexts):
                         #print resourcename,catname,month
                         #print dfx.values.shape,"  <- ",df.values.shape
                         randomindex = random.choice(dfx.index.values.tolist())
                         while randomindex in selectedindices:
                             randomindex = random.choice(dfx.index.values.tolist())
                         selectedindices.append(randomindex)  
                         newsid = df.loc[randomindex, "newsid"]
                         newsid = str(int(newsid))
                         textid = resourcename + "-" + catname + "-" + str(newsid)
                         user_textid.append((userid, textid))
                         df.loc[randomindex, "annotator"] = userid
     
     # record these newstexts to a csv 
     dfx = df.loc[selectedindices, :]
     IOtools.tocsv(dfx, self.singles_csvpath) 
     
     
     # doubles
     df["annotator2"] = ""
     selectedindices2 = []
     double_assignments = IOtools.readjson(doublejsonpath)
     for i in range(0,self.ncoders,2):
         for resourcename, catdist in double_assignments.iteritems():
         #for resourcename, catdist in resourcedist.iteritems():
             for catname, monthdist in catdist.iteritems():
                 for month, ntexts in monthdist.iteritems():
                     dfx = df[(df["resource"]==resourcename) & (df["category"]==catname) & (df["date"].str.startswith(month))]
                     for _ in range(ntexts):
                         randomindex = random.choice(dfx.index.values.tolist())
                         while randomindex in selectedindices:
                             randomindex = random.choice(dfx.index.values.tolist())
                         selectedindices.append(randomindex)  
                         selectedindices2.append(randomindex) 
                         newsid = df.loc[randomindex, "newsid"]
                         newsid = str(int(newsid))
                         textid = resourcename + "-" + catname + "-" + str(newsid)
                         
                         '''user1 = self.coders[i]
                         user2 = self.coders[i+1]
                         user_textid.append((user1, textid))
                         user_textid.append((user2, textid)) '''
                         user1 = str(i)
                         user2 = str(i+1)
                         user_textid.append((user1, textid))
                         user_textid.append((user2, textid))
                         df.loc[randomindex, "annotator"] = user1          
                         df.loc[randomindex, "annotator2"] = user2  
 
     dfx = df.loc[selectedindices2, :]
     IOtools.tocsv(dfx, self.doubles_csvpath) 
     IOtools.tocsv(df, os.path.join(self.outfolder, "corpusstats_annotatable.csv"))
                   
 
     tablespath = IOtools.ensure_dir(os.path.join(self.outfolder,"tables"))
     # write user table
     self.generate_user_table(tablespath)
     
     # write question table
     self.generate_question_table(tablespath, selectedindices)
     
     # write evaluation table
     self.generate_evalutation_table(tablespath, user_textid)
开发者ID:dicleoztur,项目名称:subjectivity_detection,代码行数:84,代码来源:annotationbuilder_old.py

示例3: has_attribute

# 需要导入模块: from sentimentfinding import IOtools [as 别名]
# 或者: from sentimentfinding.IOtools import readjson [as 别名]
                count_attrs[attr] += has_attribute(textid, attr)
        
        labelattrcountdct[label] = count_attrs
    
    if percentage:
        for label in labelattrcountdct.keys():
            labelattrcountdct[label] = dctcounts_to_percentage(labelattrcountdct[label])
    
    return labelattrcountdct

   

if __name__ == "__main__":
    
    sources = ["radikal", "solhaber", "vakit"]
    categories = ["world", "economy", "politics", "turkey"]
    
    jsonpath = "/home/dicle/Dicle/Tez/corpusstats/learning10/experiments_5fold_scale/scores/double/redef-rat_lex-rat/comb975_F_0-0_1-1_2-1_3-3_4-0_5-1_6-1_7-0_8-3/STGobj-ALLsubj/"
    fname = "test_instances"
    labeltextdct = IOtools.readjson(os.path.join(jsonpath, fname))
    
    scounts = get_inlabel_stats(sources, labeltextdct, is_of_source, False)
    print scounts
    
    ccounts = get_inlabel_stats(categories, labeltextdct, is_in_category, False)
    print ccounts
    
    # convert jsons to csv. record them at learning_for_vis with the name of the test set
    
    
开发者ID:dicleoztur,项目名称:subjectivity_detection,代码行数:30,代码来源:categoryanalysis.py

示例4: generate_tables

# 需要导入模块: from sentimentfinding import IOtools [as 别名]
# 或者: from sentimentfinding.IOtools import readjson [as 别名]
 def generate_tables(self, singlejsonpath=None, doublejsonpath=None):
     
     if singlejsonpath is None:
         singlejsonpath=self.singles_jsonpath
     if doublejsonpath is None:
         doublejsonpath=self.doubles_jsonpath
     
     # to look up selected ids in previously selected newsids
     oldquestions, numofoldquestions, numofoldevaluations, numofoldusers = self.getolderevaluations()
     searchlist = []
     searchlist.extend(oldquestions)
     
     selectedindices = []
     user_textid = []
     df = IOtools.readcsv(self.corpuspath)
     df["annotator"] = ""
     
     # singles  
     single_assignments = IOtools.readjson(singlejsonpath)
     for userid, resourcedist in single_assignments.iteritems():
         for resourcename, catdist in resourcedist.iteritems():
             for catname, monthdist in catdist.iteritems():
                 for month, ntexts in monthdist.iteritems():
                     dfx = df[(df["resource"]==resourcename) & (df["category"]==catname) & (df["date"].str.startswith(month))]
                     for _ in range(ntexts):
                         
                         randomindex = random.choice(dfx.index.values.tolist())
                         nid = str(int(df.loc[randomindex, "newsid"]))
                         name = "-".join([resourcename,catname,nid])
                         if name in oldquestions:
                         #if randomindex in oldquestions:
                             print "IN OLD LIST: ",resourcename,"+",catname,"+",randomindex
                         
                         while name in oldquestions:
                         #while randomindex in searchlist:
                             randomindex = random.choice(dfx.index.values.tolist())
                             nid = str(int(df.loc[randomindex, "newsid"]))
                             name = "-".join([resourcename,catname,nid])
                             print name," # ",
                         
                         while randomindex in selectedindices: # or name in oldquestions:
                         #while randomindex in searchlist:
                             randomindex = random.choice(dfx.index.values.tolist())
                             print name," + ",
                             
                         '''
                         #print resourcename,catname,month
                         #print dfx.values.shape,"  <- ",df.values.shape
                         randomindex = random.choice(dfx.index.values.tolist())
                         if randomindex in oldquestions:
                             print "IN OLD LIST: ",resourcename,"+",catname,"+",randomindex
                         while randomindex in selectedindices or randomindex in oldquestions:
                             randomindex = random.choice(dfx.index.values.tolist())
                         '''    
                             
                         selectedindices.append(randomindex)  
                         newsid = df.loc[randomindex, "newsid"]
                         newsid = str(int(newsid))
                         textid = resourcename + "-" + catname + "-" + str(newsid)
                         user_textid.append((userid, textid))
                         df.loc[randomindex, "annotator"] = userid
     
     # record these newstexts to a csv 
     dfx = df.loc[selectedindices, :]
     IOtools.tocsv(dfx, self.singles_csvpath) 
     
     
     # doubles
     df["annotator2"] = ""
     selectedindices2 = []
     double_assignments = IOtools.readjson(doublejsonpath)
     for pairname, resourcedist in double_assignments.iteritems():
     #for i in range(0,self.ncoders,2):
         for resourcename, catdist in resourcedist.iteritems():
         #for resourcename, catdist in resourcedist.iteritems():
             for catname, monthdist in catdist.iteritems():
                 for month, ntexts in monthdist.iteritems():
                     dfx = df[(df["resource"]==resourcename) & (df["category"]==catname) & (df["date"].str.startswith(month))]
                     for _ in range(ntexts):
                         randomindex = random.choice(dfx.index.values.tolist())
                         
                         #print "TYPE ",type(randomindex),"  oldq: ",type(int(oldquestions[0]))
                         
                         nid = str(int(df.loc[randomindex, "newsid"]))
                         name = "-".join([resourcename,catname,nid])
                         #print "TYPE ",type(name),"  oldq: ",type(oldquestions[0])
                         
                         if name in oldquestions:
                         #if randomindex in oldquestions:
                             print "IN OLD LIST: ",resourcename,"+",catname,"+",randomindex
                         
                         while name in oldquestions:
                         #while randomindex in searchlist:
                             randomindex = random.choice(dfx.index.values.tolist())
                             nid = str(int(df.loc[randomindex, "newsid"]))
                             name = "-".join([resourcename,catname,nid])
                             print name," # ",
                         
                         while randomindex in selectedindices: # or name in oldquestions:
                         #while randomindex in searchlist:
#.........这里部分代码省略.........
开发者ID:dicleoztur,项目名称:subjectivity_detection,代码行数:103,代码来源:annotation_adder.py


注:本文中的sentimentfinding.IOtools.readjson方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。