本文整理汇总了Python中scipy.optimize._differentialevolution.DifferentialEvolutionSolver._scale_parameters方法的典型用法代码示例。如果您正苦于以下问题:Python DifferentialEvolutionSolver._scale_parameters方法的具体用法?Python DifferentialEvolutionSolver._scale_parameters怎么用?Python DifferentialEvolutionSolver._scale_parameters使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy.optimize._differentialevolution.DifferentialEvolutionSolver
的用法示例。
在下文中一共展示了DifferentialEvolutionSolver._scale_parameters方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: TestDifferentialEvolutionSolver
# 需要导入模块: from scipy.optimize._differentialevolution import DifferentialEvolutionSolver [as 别名]
# 或者: from scipy.optimize._differentialevolution.DifferentialEvolutionSolver import _scale_parameters [as 别名]
#.........这里部分代码省略.........
assert_equal(solver.dither, list(mutation))
def test_invalid_mutation_values_arent_accepted(self):
func = rosen
mutation = (0.5, 3)
assert_raises(ValueError,
DifferentialEvolutionSolver,
func,
self.bounds,
mutation=mutation)
mutation = (-1, 1)
assert_raises(ValueError,
DifferentialEvolutionSolver,
func,
self.bounds,
mutation=mutation)
mutation = (0.1, np.nan)
assert_raises(ValueError,
DifferentialEvolutionSolver,
func,
self.bounds,
mutation=mutation)
mutation = 0.5
solver = DifferentialEvolutionSolver(func,
self.bounds,
mutation=mutation)
assert_equal(0.5, solver.scale)
assert_equal(None, solver.dither)
def test__scale_parameters(self):
trial = np.array([0.3])
assert_equal(30, self.dummy_solver._scale_parameters(trial))
# it should also work with the limits reversed
self.dummy_solver.limits = np.array([[100], [0.]])
assert_equal(30, self.dummy_solver._scale_parameters(trial))
def test__unscale_parameters(self):
trial = np.array([30])
assert_equal(0.3, self.dummy_solver._unscale_parameters(trial))
# it should also work with the limits reversed
self.dummy_solver.limits = np.array([[100], [0.]])
assert_equal(0.3, self.dummy_solver._unscale_parameters(trial))
def test__ensure_constraint(self):
trial = np.array([1.1, -100, 0.9, 2., 300., -0.00001])
self.dummy_solver._ensure_constraint(trial)
assert_equal(trial[2], 0.9)
assert_(np.logical_and(trial >= 0, trial <= 1).all())
def test_differential_evolution(self):
# test that the Jmin of DifferentialEvolutionSolver
# is the same as the function evaluation
solver = DifferentialEvolutionSolver(self.quadratic, [(-2, 2)])
result = solver.solve()
assert_almost_equal(result.fun, self.quadratic(result.x))
def test_best_solution_retrieval(self):
# test that the getter property method for the best solution works.
solver = DifferentialEvolutionSolver(self.quadratic, [(-2, 2)])
示例2: TestDifferentialEvolutionSolver
# 需要导入模块: from scipy.optimize._differentialevolution import DifferentialEvolutionSolver [as 别名]
# 或者: from scipy.optimize._differentialevolution.DifferentialEvolutionSolver import _scale_parameters [as 别名]
#.........这里部分代码省略.........
self.assertEqual(solver.dither, list(mutation))
def test_invalid_mutation_values_arent_accepted(self):
func = rosen
mutation = (0.5, 3)
self.assertRaises(ValueError,
DifferentialEvolutionSolver,
func,
self.bounds,
mutation=mutation)
mutation = (-1, 1)
self.assertRaises(ValueError,
DifferentialEvolutionSolver,
func,
self.bounds,
mutation=mutation)
mutation = (0.1, np.nan)
self.assertRaises(ValueError,
DifferentialEvolutionSolver,
func,
self.bounds,
mutation=mutation)
mutation = (0.5)
solver = DifferentialEvolutionSolver(func,
self.bounds,
mutation=mutation)
assert_equal(0.5, solver.scale)
assert_equal(None, solver.dither)
def test__scale_parameters(self):
trial = np.array([0.3])
assert_equal(30, self.dummy_solver._scale_parameters(trial))
# it should also work with the limits reversed
self.dummy_solver.limits = np.array([[100], [0.]])
assert_equal(30, self.dummy_solver._scale_parameters(trial))
def test__unscale_parameters(self):
trial = np.array([30])
assert_equal(0.3, self.dummy_solver._unscale_parameters(trial))
# it should also work with the limits reversed
self.dummy_solver.limits = np.array([[100], [0.]])
assert_equal(0.3, self.dummy_solver._unscale_parameters(trial))
def test__ensure_constraint(self):
trial = np.array([1.1, -100, 2., 300., -0.00001])
self.dummy_solver._ensure_constraint(trial)
assert_equal(np.all(trial <= 1), True)
def test_differential_evolution(self):
# test that the Jmin of DifferentialEvolutionSolver
# is the same as the function evaluation
solver = DifferentialEvolutionSolver(self.quadratic, [(-2, 2)])
result = solver.solve()
assert_almost_equal(result.fun, self.quadratic(result.x))
def test_best_solution_retrieval(self):
# test that the getter property method for the best solution works.
solver = DifferentialEvolutionSolver(self.quadratic, [(-2, 2)])
result = solver.solve()
assert_equal(result.x, solver.x)
示例3: TestDifferentialEvolutionSolver
# 需要导入模块: from scipy.optimize._differentialevolution import DifferentialEvolutionSolver [as 别名]
# 或者: from scipy.optimize._differentialevolution.DifferentialEvolutionSolver import _scale_parameters [as 别名]
#.........这里部分代码省略.........
assert_equal(solver.dither, list(mutation))
def test_invalid_mutation_values_arent_accepted(self):
func = rosen
mutation = (0.5, 3)
assert_raises(ValueError,
DifferentialEvolutionSolver,
func,
self.bounds,
mutation=mutation)
mutation = (-1, 1)
assert_raises(ValueError,
DifferentialEvolutionSolver,
func,
self.bounds,
mutation=mutation)
mutation = (0.1, np.nan)
assert_raises(ValueError,
DifferentialEvolutionSolver,
func,
self.bounds,
mutation=mutation)
mutation = 0.5
solver = DifferentialEvolutionSolver(func,
self.bounds,
mutation=mutation)
assert_equal(0.5, solver.scale)
assert_equal(None, solver.dither)
def test__scale_parameters(self):
trial = np.array([0.3])
assert_equal(30, self.dummy_solver._scale_parameters(trial))
# it should also work with the limits reversed
self.dummy_solver.limits = np.array([[100], [0.]])
assert_equal(30, self.dummy_solver._scale_parameters(trial))
def test__unscale_parameters(self):
trial = np.array([30])
assert_equal(0.3, self.dummy_solver._unscale_parameters(trial))
# it should also work with the limits reversed
self.dummy_solver.limits = np.array([[100], [0.]])
assert_equal(0.3, self.dummy_solver._unscale_parameters(trial))
def test__ensure_constraint(self):
trial = np.array([1.1, -100, 2., 300., -0.00001])
self.dummy_solver._ensure_constraint(trial)
assert_equal(np.all(trial <= 1), True)
def test_differential_evolution(self):
# test that the Jmin of DifferentialEvolutionSolver
# is the same as the function evaluation
solver = DifferentialEvolutionSolver(self.quadratic, [(-2, 2)])
result = solver.solve()
assert_almost_equal(result.fun, self.quadratic(result.x))
def test_best_solution_retrieval(self):
# test that the getter property method for the best solution works.
solver = DifferentialEvolutionSolver(self.quadratic, [(-2, 2)])
result = solver.solve()
assert_almost_equal(result.x, solver.x)
示例4: TestDifferentialEvolutionSolver
# 需要导入模块: from scipy.optimize._differentialevolution import DifferentialEvolutionSolver [as 别名]
# 或者: from scipy.optimize._differentialevolution.DifferentialEvolutionSolver import _scale_parameters [as 别名]
#.........这里部分代码省略.........
assert_equal(solver.dither, list(mutation))
def test_invalid_mutation_values_arent_accepted(self):
func = rosen
mutation = (0.5, 3)
assert_raises(ValueError,
DifferentialEvolutionSolver,
func,
self.bounds,
mutation=mutation)
mutation = (-1, 1)
assert_raises(ValueError,
DifferentialEvolutionSolver,
func,
self.bounds,
mutation=mutation)
mutation = (0.1, np.nan)
assert_raises(ValueError,
DifferentialEvolutionSolver,
func,
self.bounds,
mutation=mutation)
mutation = 0.5
solver = DifferentialEvolutionSolver(func,
self.bounds,
mutation=mutation)
assert_equal(0.5, solver.scale)
assert_equal(None, solver.dither)
def test__scale_parameters(self):
trial = np.array([0.3])
assert_equal(30, self.dummy_solver._scale_parameters(trial))
# it should also work with the limits reversed
self.dummy_solver.limits = np.array([[100], [0.]])
assert_equal(30, self.dummy_solver._scale_parameters(trial))
def test__unscale_parameters(self):
trial = np.array([30])
assert_equal(0.3, self.dummy_solver._unscale_parameters(trial))
# it should also work with the limits reversed
self.dummy_solver.limits = np.array([[100], [0.]])
assert_equal(0.3, self.dummy_solver._unscale_parameters(trial))
def test__ensure_constraint(self):
trial = np.array([1.1, -100, 0.9, 2., 300., -0.00001])
self.dummy_solver._ensure_constraint(trial)
assert_equal(trial[2], 0.9)
assert_(np.logical_and(trial >= 0, trial <= 1).all())
def test_differential_evolution(self):
# test that the Jmin of DifferentialEvolutionSolver
# is the same as the function evaluation
solver = DifferentialEvolutionSolver(self.quadratic, [(-2, 2)])
result = solver.solve()
assert_almost_equal(result.fun, self.quadratic(result.x))
def test_best_solution_retrieval(self):
# test that the getter property method for the best solution works.
solver = DifferentialEvolutionSolver(self.quadratic, [(-2, 2)])