本文整理汇总了Python中scipy.optimize._differentialevolution.DifferentialEvolutionSolver._randtobest1方法的典型用法代码示例。如果您正苦于以下问题:Python DifferentialEvolutionSolver._randtobest1方法的具体用法?Python DifferentialEvolutionSolver._randtobest1怎么用?Python DifferentialEvolutionSolver._randtobest1使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy.optimize._differentialevolution.DifferentialEvolutionSolver
的用法示例。
在下文中一共展示了DifferentialEvolutionSolver._randtobest1方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: TestDifferentialEvolutionSolver
# 需要导入模块: from scipy.optimize._differentialevolution import DifferentialEvolutionSolver [as 别名]
# 或者: from scipy.optimize._differentialevolution.DifferentialEvolutionSolver import _randtobest1 [as 别名]
class TestDifferentialEvolutionSolver(object):
def setup_method(self):
self.old_seterr = np.seterr(invalid='raise')
self.limits = np.array([[0., 0.],
[2., 2.]])
self.bounds = [(0., 2.), (0., 2.)]
self.dummy_solver = DifferentialEvolutionSolver(self.quadratic,
[(0, 100)])
# dummy_solver2 will be used to test mutation strategies
self.dummy_solver2 = DifferentialEvolutionSolver(self.quadratic,
[(0, 1)],
popsize=7,
mutation=0.5)
# create a population that's only 7 members long
# [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
population = np.atleast_2d(np.arange(0.1, 0.8, 0.1)).T
self.dummy_solver2.population = population
def teardown_method(self):
np.seterr(**self.old_seterr)
def quadratic(self, x):
return x[0]**2
def test__strategy_resolves(self):
# test that the correct mutation function is resolved by
# different requested strategy arguments
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='best1exp')
assert_equal(solver.strategy, 'best1exp')
assert_equal(solver.mutation_func.__name__, '_best1')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='best1bin')
assert_equal(solver.strategy, 'best1bin')
assert_equal(solver.mutation_func.__name__, '_best1')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='rand1bin')
assert_equal(solver.strategy, 'rand1bin')
assert_equal(solver.mutation_func.__name__, '_rand1')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='rand1exp')
assert_equal(solver.strategy, 'rand1exp')
assert_equal(solver.mutation_func.__name__, '_rand1')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='rand2exp')
assert_equal(solver.strategy, 'rand2exp')
assert_equal(solver.mutation_func.__name__, '_rand2')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='best2bin')
assert_equal(solver.strategy, 'best2bin')
assert_equal(solver.mutation_func.__name__, '_best2')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='rand2bin')
assert_equal(solver.strategy, 'rand2bin')
assert_equal(solver.mutation_func.__name__, '_rand2')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='rand2exp')
assert_equal(solver.strategy, 'rand2exp')
assert_equal(solver.mutation_func.__name__, '_rand2')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='randtobest1bin')
assert_equal(solver.strategy, 'randtobest1bin')
assert_equal(solver.mutation_func.__name__, '_randtobest1')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='randtobest1exp')
assert_equal(solver.strategy, 'randtobest1exp')
assert_equal(solver.mutation_func.__name__, '_randtobest1')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='currenttobest1bin')
assert_equal(solver.strategy, 'currenttobest1bin')
assert_equal(solver.mutation_func.__name__, '_currenttobest1')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='currenttobest1exp')
assert_equal(solver.strategy, 'currenttobest1exp')
#.........这里部分代码省略.........
示例2: TestDifferentialEvolutionSolver
# 需要导入模块: from scipy.optimize._differentialevolution import DifferentialEvolutionSolver [as 别名]
# 或者: from scipy.optimize._differentialevolution.DifferentialEvolutionSolver import _randtobest1 [as 别名]
class TestDifferentialEvolutionSolver(TestCase):
def setUp(self):
self.old_seterr = np.seterr(invalid='raise')
self.limits = np.array([[0., 0.],
[2., 2.]])
self.bounds = [(0., 2.), (0., 2.)]
self.dummy_solver = DifferentialEvolutionSolver(self.quadratic,
[(0, 100)])
#dummy_solver2 will be used to test mutation strategies
self.dummy_solver2 = DifferentialEvolutionSolver(self.quadratic,
[(0, 1)],
popsize=7,
mutation=0.5)
#create a population that's only 7 members long
#[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
population = np.atleast_2d(np.arange(0.1, 0.8, 0.1)).T
self.dummy_solver2.population = population
def tearDown(self):
np.seterr(**self.old_seterr)
def quadratic(self, x):
return x[0]**2
def test__strategy_resolves(self):
#test that the correct mutation function is resolved by
#different requested strategy arguments
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='best1exp')
assert_equal(solver.strategy, 'best1exp')
assert_equal(solver.mutation_func.__name__, '_best1')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='best1bin')
assert_equal(solver.strategy, 'best1bin')
assert_equal(solver.mutation_func.__name__, '_best1')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='rand1bin')
assert_equal(solver.strategy, 'rand1bin')
assert_equal(solver.mutation_func.__name__, '_rand1')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='rand1exp')
assert_equal(solver.strategy, 'rand1exp')
assert_equal(solver.mutation_func.__name__, '_rand1')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='rand2exp')
assert_equal(solver.strategy, 'rand2exp')
assert_equal(solver.mutation_func.__name__, '_rand2')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='best2bin')
assert_equal(solver.strategy, 'best2bin')
assert_equal(solver.mutation_func.__name__, '_best2')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='rand2bin')
assert_equal(solver.strategy, 'rand2bin')
assert_equal(solver.mutation_func.__name__, '_rand2')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='rand2exp')
assert_equal(solver.strategy, 'rand2exp')
assert_equal(solver.mutation_func.__name__, '_rand2')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='randtobest1bin')
assert_equal(solver.strategy, 'randtobest1bin')
assert_equal(solver.mutation_func.__name__, '_randtobest1')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='randtobest1exp')
assert_equal(solver.strategy, 'randtobest1exp')
assert_equal(solver.mutation_func.__name__, '_randtobest1')
def test__mutate1(self):
#strategies */1/*, i.e. rand/1/bin, best/1/exp, etc.
result = np.array([0.05])
trial = self.dummy_solver2._best1((2, 3, 4, 5, 6))
assert_allclose(trial, result)
result = np.array([0.25])
trial = self.dummy_solver2._rand1((2, 3, 4, 5, 6))
assert_allclose(trial, result)
#.........这里部分代码省略.........
示例3: TestDifferentialEvolutionSolver
# 需要导入模块: from scipy.optimize._differentialevolution import DifferentialEvolutionSolver [as 别名]
# 或者: from scipy.optimize._differentialevolution.DifferentialEvolutionSolver import _randtobest1 [as 别名]
class TestDifferentialEvolutionSolver(object):
def setup_method(self):
self.old_seterr = np.seterr(invalid='raise')
self.limits = np.array([[0., 0.],
[2., 2.]])
self.bounds = [(0., 2.), (0., 2.)]
self.dummy_solver = DifferentialEvolutionSolver(self.quadratic,
[(0, 100)])
# dummy_solver2 will be used to test mutation strategies
self.dummy_solver2 = DifferentialEvolutionSolver(self.quadratic,
[(0, 1)],
popsize=7,
mutation=0.5)
# create a population that's only 7 members long
# [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
population = np.atleast_2d(np.arange(0.1, 0.8, 0.1)).T
self.dummy_solver2.population = population
def teardown_method(self):
np.seterr(**self.old_seterr)
def quadratic(self, x):
return x[0]**2
def test__strategy_resolves(self):
# test that the correct mutation function is resolved by
# different requested strategy arguments
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='best1exp')
assert_equal(solver.strategy, 'best1exp')
assert_equal(solver.mutation_func.__name__, '_best1')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='best1bin')
assert_equal(solver.strategy, 'best1bin')
assert_equal(solver.mutation_func.__name__, '_best1')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='rand1bin')
assert_equal(solver.strategy, 'rand1bin')
assert_equal(solver.mutation_func.__name__, '_rand1')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='rand1exp')
assert_equal(solver.strategy, 'rand1exp')
assert_equal(solver.mutation_func.__name__, '_rand1')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='rand2exp')
assert_equal(solver.strategy, 'rand2exp')
assert_equal(solver.mutation_func.__name__, '_rand2')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='best2bin')
assert_equal(solver.strategy, 'best2bin')
assert_equal(solver.mutation_func.__name__, '_best2')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='rand2bin')
assert_equal(solver.strategy, 'rand2bin')
assert_equal(solver.mutation_func.__name__, '_rand2')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='rand2exp')
assert_equal(solver.strategy, 'rand2exp')
assert_equal(solver.mutation_func.__name__, '_rand2')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='randtobest1bin')
assert_equal(solver.strategy, 'randtobest1bin')
assert_equal(solver.mutation_func.__name__, '_randtobest1')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='randtobest1exp')
assert_equal(solver.strategy, 'randtobest1exp')
assert_equal(solver.mutation_func.__name__, '_randtobest1')
def test__mutate1(self):
# strategies */1/*, i.e. rand/1/bin, best/1/exp, etc.
result = np.array([0.05])
trial = self.dummy_solver2._best1((2, 3, 4, 5, 6))
assert_allclose(trial, result)
result = np.array([0.25])
trial = self.dummy_solver2._rand1((2, 3, 4, 5, 6))
assert_allclose(trial, result)
#.........这里部分代码省略.........
示例4: TestDifferentialEvolutionSolver
# 需要导入模块: from scipy.optimize._differentialevolution import DifferentialEvolutionSolver [as 别名]
# 或者: from scipy.optimize._differentialevolution.DifferentialEvolutionSolver import _randtobest1 [as 别名]
class TestDifferentialEvolutionSolver(object):
def setup_method(self):
self.old_seterr = np.seterr(invalid='raise')
self.limits = np.array([[0., 0.],
[2., 2.]])
self.bounds = [(0., 2.), (0., 2.)]
self.dummy_solver = DifferentialEvolutionSolver(self.quadratic,
[(0, 100)])
# dummy_solver2 will be used to test mutation strategies
self.dummy_solver2 = DifferentialEvolutionSolver(self.quadratic,
[(0, 1)],
popsize=7,
mutation=0.5)
# create a population that's only 7 members long
# [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
population = np.atleast_2d(np.arange(0.1, 0.8, 0.1)).T
self.dummy_solver2.population = population
def teardown_method(self):
np.seterr(**self.old_seterr)
def quadratic(self, x):
return x[0]**2
def test__strategy_resolves(self):
# test that the correct mutation function is resolved by
# different requested strategy arguments
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='best1exp')
assert_equal(solver.strategy, 'best1exp')
assert_equal(solver.mutation_func.__name__, '_best1')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='best1bin')
assert_equal(solver.strategy, 'best1bin')
assert_equal(solver.mutation_func.__name__, '_best1')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='rand1bin')
assert_equal(solver.strategy, 'rand1bin')
assert_equal(solver.mutation_func.__name__, '_rand1')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='rand1exp')
assert_equal(solver.strategy, 'rand1exp')
assert_equal(solver.mutation_func.__name__, '_rand1')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='rand2exp')
assert_equal(solver.strategy, 'rand2exp')
assert_equal(solver.mutation_func.__name__, '_rand2')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='best2bin')
assert_equal(solver.strategy, 'best2bin')
assert_equal(solver.mutation_func.__name__, '_best2')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='rand2bin')
assert_equal(solver.strategy, 'rand2bin')
assert_equal(solver.mutation_func.__name__, '_rand2')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='rand2exp')
assert_equal(solver.strategy, 'rand2exp')
assert_equal(solver.mutation_func.__name__, '_rand2')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='randtobest1bin')
assert_equal(solver.strategy, 'randtobest1bin')
assert_equal(solver.mutation_func.__name__, '_randtobest1')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='randtobest1exp')
assert_equal(solver.strategy, 'randtobest1exp')
assert_equal(solver.mutation_func.__name__, '_randtobest1')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='currenttobest1bin')
assert_equal(solver.strategy, 'currenttobest1bin')
assert_equal(solver.mutation_func.__name__, '_currenttobest1')
solver = DifferentialEvolutionSolver(rosen,
self.bounds,
strategy='currenttobest1exp')
assert_equal(solver.strategy, 'currenttobest1exp')
#.........这里部分代码省略.........