当前位置: 首页>>代码示例>>Python>>正文


Python DifferentialEvolutionSolver._randtobest1方法代码示例

本文整理汇总了Python中scipy.optimize._differentialevolution.DifferentialEvolutionSolver._randtobest1方法的典型用法代码示例。如果您正苦于以下问题:Python DifferentialEvolutionSolver._randtobest1方法的具体用法?Python DifferentialEvolutionSolver._randtobest1怎么用?Python DifferentialEvolutionSolver._randtobest1使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在scipy.optimize._differentialevolution.DifferentialEvolutionSolver的用法示例。


在下文中一共展示了DifferentialEvolutionSolver._randtobest1方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: TestDifferentialEvolutionSolver

# 需要导入模块: from scipy.optimize._differentialevolution import DifferentialEvolutionSolver [as 别名]
# 或者: from scipy.optimize._differentialevolution.DifferentialEvolutionSolver import _randtobest1 [as 别名]
class TestDifferentialEvolutionSolver(object):

    def setup_method(self):
        self.old_seterr = np.seterr(invalid='raise')
        self.limits = np.array([[0., 0.],
                                [2., 2.]])
        self.bounds = [(0., 2.), (0., 2.)]

        self.dummy_solver = DifferentialEvolutionSolver(self.quadratic,
                                                        [(0, 100)])

        # dummy_solver2 will be used to test mutation strategies
        self.dummy_solver2 = DifferentialEvolutionSolver(self.quadratic,
                                                         [(0, 1)],
                                                         popsize=7,
                                                         mutation=0.5)
        # create a population that's only 7 members long
        # [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
        population = np.atleast_2d(np.arange(0.1, 0.8, 0.1)).T
        self.dummy_solver2.population = population

    def teardown_method(self):
        np.seterr(**self.old_seterr)

    def quadratic(self, x):
        return x[0]**2

    def test__strategy_resolves(self):
        # test that the correct mutation function is resolved by
        # different requested strategy arguments
        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='best1exp')
        assert_equal(solver.strategy, 'best1exp')
        assert_equal(solver.mutation_func.__name__, '_best1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='best1bin')
        assert_equal(solver.strategy, 'best1bin')
        assert_equal(solver.mutation_func.__name__, '_best1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand1bin')
        assert_equal(solver.strategy, 'rand1bin')
        assert_equal(solver.mutation_func.__name__, '_rand1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand1exp')
        assert_equal(solver.strategy, 'rand1exp')
        assert_equal(solver.mutation_func.__name__, '_rand1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand2exp')
        assert_equal(solver.strategy, 'rand2exp')
        assert_equal(solver.mutation_func.__name__, '_rand2')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='best2bin')
        assert_equal(solver.strategy, 'best2bin')
        assert_equal(solver.mutation_func.__name__, '_best2')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand2bin')
        assert_equal(solver.strategy, 'rand2bin')
        assert_equal(solver.mutation_func.__name__, '_rand2')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand2exp')
        assert_equal(solver.strategy, 'rand2exp')
        assert_equal(solver.mutation_func.__name__, '_rand2')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='randtobest1bin')
        assert_equal(solver.strategy, 'randtobest1bin')
        assert_equal(solver.mutation_func.__name__, '_randtobest1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='randtobest1exp')
        assert_equal(solver.strategy, 'randtobest1exp')
        assert_equal(solver.mutation_func.__name__, '_randtobest1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='currenttobest1bin')
        assert_equal(solver.strategy, 'currenttobest1bin')
        assert_equal(solver.mutation_func.__name__, '_currenttobest1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='currenttobest1exp')
        assert_equal(solver.strategy, 'currenttobest1exp')
#.........这里部分代码省略.........
开发者ID:toddrjen,项目名称:scipy,代码行数:103,代码来源:test__differential_evolution.py

示例2: TestDifferentialEvolutionSolver

# 需要导入模块: from scipy.optimize._differentialevolution import DifferentialEvolutionSolver [as 别名]
# 或者: from scipy.optimize._differentialevolution.DifferentialEvolutionSolver import _randtobest1 [as 别名]
class TestDifferentialEvolutionSolver(TestCase):

    def setUp(self):
        self.old_seterr = np.seterr(invalid='raise')
        self.limits = np.array([[0., 0.],
                                [2., 2.]])
        self.bounds = [(0., 2.), (0., 2.)]

        self.dummy_solver = DifferentialEvolutionSolver(self.quadratic,
                                                        [(0, 100)])

        #dummy_solver2 will be used to test mutation strategies
        self.dummy_solver2 = DifferentialEvolutionSolver(self.quadratic,
                                                         [(0, 1)],
                                                         popsize=7,
                                                         mutation=0.5)
        #create a population that's only 7 members long
        #[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
        population = np.atleast_2d(np.arange(0.1, 0.8, 0.1)).T
        self.dummy_solver2.population = population

    def tearDown(self):
        np.seterr(**self.old_seterr)

    def quadratic(self, x):
        return x[0]**2

    def test__strategy_resolves(self):
        #test that the correct mutation function is resolved by
        #different requested strategy arguments
        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='best1exp')
        assert_equal(solver.strategy, 'best1exp')
        assert_equal(solver.mutation_func.__name__, '_best1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='best1bin')
        assert_equal(solver.strategy, 'best1bin')
        assert_equal(solver.mutation_func.__name__, '_best1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand1bin')
        assert_equal(solver.strategy, 'rand1bin')
        assert_equal(solver.mutation_func.__name__, '_rand1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand1exp')
        assert_equal(solver.strategy, 'rand1exp')
        assert_equal(solver.mutation_func.__name__, '_rand1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand2exp')
        assert_equal(solver.strategy, 'rand2exp')
        assert_equal(solver.mutation_func.__name__, '_rand2')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='best2bin')
        assert_equal(solver.strategy, 'best2bin')
        assert_equal(solver.mutation_func.__name__, '_best2')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand2bin')
        assert_equal(solver.strategy, 'rand2bin')
        assert_equal(solver.mutation_func.__name__, '_rand2')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand2exp')
        assert_equal(solver.strategy, 'rand2exp')
        assert_equal(solver.mutation_func.__name__, '_rand2')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='randtobest1bin')
        assert_equal(solver.strategy, 'randtobest1bin')
        assert_equal(solver.mutation_func.__name__, '_randtobest1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='randtobest1exp')
        assert_equal(solver.strategy, 'randtobest1exp')
        assert_equal(solver.mutation_func.__name__, '_randtobest1')

    def test__mutate1(self):
        #strategies */1/*, i.e. rand/1/bin, best/1/exp, etc.
        result = np.array([0.05])
        trial = self.dummy_solver2._best1((2, 3, 4, 5, 6))
        assert_allclose(trial, result)

        result = np.array([0.25])
        trial = self.dummy_solver2._rand1((2, 3, 4, 5, 6))
        assert_allclose(trial, result)

#.........这里部分代码省略.........
开发者ID:AI-Org,项目名称:scipy,代码行数:103,代码来源:test__differential_evolution.py

示例3: TestDifferentialEvolutionSolver

# 需要导入模块: from scipy.optimize._differentialevolution import DifferentialEvolutionSolver [as 别名]
# 或者: from scipy.optimize._differentialevolution.DifferentialEvolutionSolver import _randtobest1 [as 别名]
class TestDifferentialEvolutionSolver(object):

    def setup_method(self):
        self.old_seterr = np.seterr(invalid='raise')
        self.limits = np.array([[0., 0.],
                                [2., 2.]])
        self.bounds = [(0., 2.), (0., 2.)]

        self.dummy_solver = DifferentialEvolutionSolver(self.quadratic,
                                                        [(0, 100)])

        # dummy_solver2 will be used to test mutation strategies
        self.dummy_solver2 = DifferentialEvolutionSolver(self.quadratic,
                                                         [(0, 1)],
                                                         popsize=7,
                                                         mutation=0.5)
        # create a population that's only 7 members long
        # [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
        population = np.atleast_2d(np.arange(0.1, 0.8, 0.1)).T
        self.dummy_solver2.population = population

    def teardown_method(self):
        np.seterr(**self.old_seterr)

    def quadratic(self, x):
        return x[0]**2

    def test__strategy_resolves(self):
        # test that the correct mutation function is resolved by
        # different requested strategy arguments
        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='best1exp')
        assert_equal(solver.strategy, 'best1exp')
        assert_equal(solver.mutation_func.__name__, '_best1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='best1bin')
        assert_equal(solver.strategy, 'best1bin')
        assert_equal(solver.mutation_func.__name__, '_best1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand1bin')
        assert_equal(solver.strategy, 'rand1bin')
        assert_equal(solver.mutation_func.__name__, '_rand1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand1exp')
        assert_equal(solver.strategy, 'rand1exp')
        assert_equal(solver.mutation_func.__name__, '_rand1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand2exp')
        assert_equal(solver.strategy, 'rand2exp')
        assert_equal(solver.mutation_func.__name__, '_rand2')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='best2bin')
        assert_equal(solver.strategy, 'best2bin')
        assert_equal(solver.mutation_func.__name__, '_best2')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand2bin')
        assert_equal(solver.strategy, 'rand2bin')
        assert_equal(solver.mutation_func.__name__, '_rand2')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand2exp')
        assert_equal(solver.strategy, 'rand2exp')
        assert_equal(solver.mutation_func.__name__, '_rand2')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='randtobest1bin')
        assert_equal(solver.strategy, 'randtobest1bin')
        assert_equal(solver.mutation_func.__name__, '_randtobest1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='randtobest1exp')
        assert_equal(solver.strategy, 'randtobest1exp')
        assert_equal(solver.mutation_func.__name__, '_randtobest1')

    def test__mutate1(self):
        # strategies */1/*, i.e. rand/1/bin, best/1/exp, etc.
        result = np.array([0.05])
        trial = self.dummy_solver2._best1((2, 3, 4, 5, 6))
        assert_allclose(trial, result)

        result = np.array([0.25])
        trial = self.dummy_solver2._rand1((2, 3, 4, 5, 6))
        assert_allclose(trial, result)

#.........这里部分代码省略.........
开发者ID:alpaco42,项目名称:ML_Spring_2018,代码行数:103,代码来源:test__differential_evolution.py

示例4: TestDifferentialEvolutionSolver

# 需要导入模块: from scipy.optimize._differentialevolution import DifferentialEvolutionSolver [as 别名]
# 或者: from scipy.optimize._differentialevolution.DifferentialEvolutionSolver import _randtobest1 [as 别名]
class TestDifferentialEvolutionSolver(object):

    def setup_method(self):
        self.old_seterr = np.seterr(invalid='raise')
        self.limits = np.array([[0., 0.],
                                [2., 2.]])
        self.bounds = [(0., 2.), (0., 2.)]

        self.dummy_solver = DifferentialEvolutionSolver(self.quadratic,
                                                        [(0, 100)])

        # dummy_solver2 will be used to test mutation strategies
        self.dummy_solver2 = DifferentialEvolutionSolver(self.quadratic,
                                                         [(0, 1)],
                                                         popsize=7,
                                                         mutation=0.5)
        # create a population that's only 7 members long
        # [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
        population = np.atleast_2d(np.arange(0.1, 0.8, 0.1)).T
        self.dummy_solver2.population = population

    def teardown_method(self):
        np.seterr(**self.old_seterr)

    def quadratic(self, x):
        return x[0]**2

    def test__strategy_resolves(self):
        # test that the correct mutation function is resolved by
        # different requested strategy arguments
        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='best1exp')
        assert_equal(solver.strategy, 'best1exp')
        assert_equal(solver.mutation_func.__name__, '_best1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='best1bin')
        assert_equal(solver.strategy, 'best1bin')
        assert_equal(solver.mutation_func.__name__, '_best1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand1bin')
        assert_equal(solver.strategy, 'rand1bin')
        assert_equal(solver.mutation_func.__name__, '_rand1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand1exp')
        assert_equal(solver.strategy, 'rand1exp')
        assert_equal(solver.mutation_func.__name__, '_rand1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand2exp')
        assert_equal(solver.strategy, 'rand2exp')
        assert_equal(solver.mutation_func.__name__, '_rand2')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='best2bin')
        assert_equal(solver.strategy, 'best2bin')
        assert_equal(solver.mutation_func.__name__, '_best2')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand2bin')
        assert_equal(solver.strategy, 'rand2bin')
        assert_equal(solver.mutation_func.__name__, '_rand2')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='rand2exp')
        assert_equal(solver.strategy, 'rand2exp')
        assert_equal(solver.mutation_func.__name__, '_rand2')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='randtobest1bin')
        assert_equal(solver.strategy, 'randtobest1bin')
        assert_equal(solver.mutation_func.__name__, '_randtobest1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='randtobest1exp')
        assert_equal(solver.strategy, 'randtobest1exp')
        assert_equal(solver.mutation_func.__name__, '_randtobest1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='currenttobest1bin')
        assert_equal(solver.strategy, 'currenttobest1bin')
        assert_equal(solver.mutation_func.__name__, '_currenttobest1')

        solver = DifferentialEvolutionSolver(rosen,
                                             self.bounds,
                                             strategy='currenttobest1exp')
        assert_equal(solver.strategy, 'currenttobest1exp')
#.........这里部分代码省略.........
开发者ID:anntzer,项目名称:scipy,代码行数:103,代码来源:test__differential_evolution.py


注:本文中的scipy.optimize._differentialevolution.DifferentialEvolutionSolver._randtobest1方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。