本文整理汇总了Python中scipy.optimize.OptimizeResult.specs方法的典型用法代码示例。如果您正苦于以下问题:Python OptimizeResult.specs方法的具体用法?Python OptimizeResult.specs怎么用?Python OptimizeResult.specs使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy.optimize.OptimizeResult
的用法示例。
在下文中一共展示了OptimizeResult.specs方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: create_result
# 需要导入模块: from scipy.optimize import OptimizeResult [as 别名]
# 或者: from scipy.optimize.OptimizeResult import specs [as 别名]
def create_result(Xi, yi, space=None, rng=None, specs=None, models=None):
"""
Initialize an `OptimizeResult` object.
Parameters
----------
* `Xi` [list of lists, shape=(n_iters, n_features)]:
Location of the minimum at every iteration.
* `yi` [array-like, shape=(n_iters,)]:
Minimum value obtained at every iteration.
* `space` [Space instance, optional]:
Search space.
* `rng` [RandomState instance, optional]:
State of the random state.
* `specs` [dict, optional]:
Call specifications.
* `models` [list, optional]:
List of fit surrogate models.
Returns
-------
* `res` [`OptimizeResult`, scipy object]:
OptimizeResult instance with the required information.
"""
res = OptimizeResult()
yi = np.asarray(yi)
if np.ndim(yi) == 2:
res.log_time = np.ravel(yi[:, 1])
yi = np.ravel(yi[:, 0])
best = np.argmin(yi)
res.x = Xi[best]
res.fun = yi[best]
res.func_vals = yi
res.x_iters = Xi
res.models = models
res.space = space
res.random_state = rng
res.specs = specs
return res
示例2: gp_minimize
# 需要导入模块: from scipy.optimize import OptimizeResult [as 别名]
# 或者: from scipy.optimize.OptimizeResult import specs [as 别名]
#.........这里部分代码省略.........
- If it is a list of lists, use it as a list of input points.
- If it is a list, use it as a single initial input point.
- If it is `None`, no initial input points are used.
* `y0` [list, scalar or `None`]
Evaluation of initial input points.
- If it is a list, then it corresponds to evaluations of the function
at each element of `x0` : the i-th element of `y0` corresponds
to the function evaluated at the i-th element of `x0`.
- If it is a scalar, then it corresponds to the evaluation of the
function at `x0`.
- If it is None and `x0` is provided, then the function is evaluated
at each element of `x0`.
* `random_state` [int, RandomState instance, or None (default)]:
Set random state to something other than None for reproducible
results.
Returns
-------
* `res` [`OptimizeResult`, scipy object]:
The optimization result returned as a OptimizeResult object.
Important attributes are:
- `x` [list]: location of the minimum.
- `fun` [float]: function value at the minimum.
- `models`: surrogate models used for each iteration.
- `x_iters` [list of lists]: location of function evaluation for each
iteration.
- `func_vals` [array]: function value for each iteration.
- `space` [Space]: the optimization space.
- `specs` [dict]`: the call specifications.
- `rng` [RandomState instance]: State of the random state
at the end of minimization.
For more details related to the OptimizeResult object, refer
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html
"""
# Save call args
specs = {"args": copy.copy(inspect.currentframe().f_locals),
"function": inspect.currentframe().f_code.co_name}
# Check params
rng = check_random_state(random_state)
space = Space(dimensions)
# Default GP
if base_estimator is None:
base_estimator = GaussianProcessRegressor(
kernel=(ConstantKernel(1.0, (0.01, 1000.0)) *
Matern(length_scale=np.ones(space.transformed_n_dims),
length_scale_bounds=[(0.01, 100)] * space.transformed_n_dims,
nu=2.5)),
normalize_y=True, alpha=alpha, random_state=random_state)
# Initialize with provided points (x0 and y0) and/or random points
if x0 is None:
x0 = []
elif not isinstance(x0[0], list):
x0 = [x0]
if not isinstance(x0, list):
raise ValueError("`x0` should be a list, but got %s" % type(x0))
示例3: dummy_minimize
# 需要导入模块: from scipy.optimize import OptimizeResult [as 别名]
# 或者: from scipy.optimize.OptimizeResult import specs [as 别名]
def dummy_minimize(func, dimensions, n_calls=100,
x0=None, y0=None, random_state=None):
"""Random search by uniform sampling within the given bounds.
Parameters
----------
* `func` [callable]:
Function to minimize. Should take a array of parameters and
return the function values.
* `dimensions` [list, shape=(n_dims,)]:
List of search space dimensions.
Each search dimension can be defined either as
- a `(upper_bound, lower_bound)` tuple (for `Real` or `Integer`
dimensions),
- a `(upper_bound, lower_bound, "prior")` tuple (for `Real`
dimensions),
- as a list of categories (for `Categorical` dimensions), or
- an instance of a `Dimension` object (`Real`, `Integer` or
`Categorical`).
* `n_calls` [int, default=100]:
Number of calls to `func` to find the minimum.
* `x0` [list, list of lists or `None`]:
Initial input points.
- If it is a list of lists, use it as a list of input points.
- If it is a list, use it as a single initial input point.
- If it is `None`, no initial input points are used.
* `y0` [list, scalar or `None`]
Evaluation of initial input points.
- If it is a list, then it corresponds to evaluations of the function
at each element of `x0` : the i-th element of `y0` corresponds
to the function evaluated at the i-th element of `x0`.
- If it is a scalar, then it corresponds to the evaluation of the
function at `x0`.
- If it is None and `x0` is provided, then the function is evaluated
at each element of `x0`.
* `random_state` [int, RandomState instance, or None (default)]:
Set random state to something other than None for reproducible
results.
Returns
-------
* `res` [`OptimizeResult`, scipy object]:
The optimization result returned as a OptimizeResult object.
Important attributes are:
- `x` [list]: location of the minimum.
- `fun` [float]: function value at the minimum.
- `x_iters` [list of lists]: location of function evaluation for each
iteration.
- `func_vals` [array]: function value for each iteration.
- `space` [Space]: the optimisation space.
- `specs` [dict]: the call specifications.
- `rng` [RandomState instance]: State of the random state
at the end of minimization.
For more details related to the OptimizeResult object, refer
http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html
"""
# Save call args
specs = {"args": copy.copy(inspect.currentframe().f_locals),
"function": inspect.currentframe().f_code.co_name}
# Check params
rng = check_random_state(random_state)
space = Space(dimensions)
if x0 is None:
x0 = []
elif not isinstance(x0[0], list):
x0 = [x0]
if not isinstance(x0, list):
raise ValueError("`x0` should be a list, got %s" % type(x0))
if len(x0) > 0 and y0 is not None:
if isinstance(y0, Iterable):
y0 = list(y0)
elif isinstance(y0, numbers.Number):
y0 = [y0]
else:
raise ValueError("`y0` should be an iterable or a scalar, got %s"
% type(y0))
if len(x0) != len(y0):
raise ValueError("`x0` and `y0` should have the same length")
if not all(map(np.isscalar, y0)):
raise ValueError("`y0` elements should be scalars")
elif len(x0) > 0 and y0 is None:
y0 = []
n_calls -= len(x0)
#.........这里部分代码省略.........