本文整理汇总了Python中scipy.optimize.OptimizeResult.message方法的典型用法代码示例。如果您正苦于以下问题:Python OptimizeResult.message方法的具体用法?Python OptimizeResult.message怎么用?Python OptimizeResult.message使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类scipy.optimize.OptimizeResult
的用法示例。
在下文中一共展示了OptimizeResult.message方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: result
# 需要导入模块: from scipy.optimize import OptimizeResult [as 别名]
# 或者: from scipy.optimize.OptimizeResult import message [as 别名]
def result(self):
""" The OptimizeResult """
res = OptimizeResult()
res.x = self._xmin
res.fun = self._fvalue
res.message = self._message
res.nit = self._step_record
return res
示例2: scipy_nlopt_cobyla
# 需要导入模块: from scipy.optimize import OptimizeResult [as 别名]
# 或者: from scipy.optimize.OptimizeResult import message [as 别名]
def scipy_nlopt_cobyla(*args, **kwargs):
"""Wraps nlopt library cobyla function to be compatible with scipy optimize
parameters:
args[0]: target, function to be minimized
args[1]: x0, starting point for minimization
bounds: list of bounds for the movement
[[min, max], [min, max], ...]
ftol_rel: same as in nlopt
xtol_rel: same as in nlopt
one of the tol_rel should be specified
returns:
OptimizeResult() object with properly set x, fun, success.
status is not set when nlopt.RoundoffLimited is raised
"""
answ = OptimizeResult()
bounds = kwargs['bounds']
opt = nlopt.opt(nlopt.LN_COBYLA, len(args[1]))
opt.set_lower_bounds([i[0] for i in bounds])
opt.set_upper_bounds([i[1] for i in bounds])
if 'ftol_rel' in kwargs.keys():
opt.set_ftol_rel(kwargs['ftol_rel'])
if 'xtol_rel' in kwargs.keys():
opt.set_ftol_rel(kwargs['xtol_rel'])
opt.set_min_objective(args[0])
x0 = list(args[1])
try:
x1 = opt.optimize(x0)
except nlopt.RoundoffLimited:
answ.x = x0
answ.fun = args[0](x0)
answ.success = False
answ.message = 'nlopt.RoundoffLimited'
return answ
answ.x = x1
answ.fun = args[0](x1)
answ.success = True if opt.last_optimize_result() in [3, 4] else False
answ.status = opt.last_optimize_result()
if not answ.fun == opt.last_optimum_value():
print 'Something\'s wrong, ', answ.fun, opt.last_optimum_value()
return answ
示例3: dual_annealing
# 需要导入模块: from scipy.optimize import OptimizeResult [as 别名]
# 或者: from scipy.optimize.OptimizeResult import message [as 别名]
def dual_annealing(func, x0, bounds, args=(), maxiter=1000,
local_search_options={}, initial_temp=5230.,
restart_temp_ratio=2.e-5, visit=2.62, accept=-5.0,
maxfun=1e7, seed=None, no_local_search=False,
callback=None):
"""
Find the global minimum of a function using Dual Annealing.
Parameters
----------
func : callable
The objective function to be minimized. Must be in the form
``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array
and ``args`` is a tuple of any additional fixed parameters needed to
completely specify the function.
x0 : ndarray, shape(n,)
A single initial starting point coordinates. If ``None`` is provided,
initial coordinates are automatically generated (using the ``reset``
method from the internal ``EnergyState`` class).
bounds : sequence, shape (n, 2)
Bounds for variables. ``(min, max)`` pairs for each element in ``x``,
defining bounds for the objective function parameter.
args : tuple, optional
Any additional fixed parameters needed to completely specify the
objective function.
maxiter : int, optional
The maximum number of global search iterations. Default value is 1000.
local_search_options : dict, optional
Extra keyword arguments to be passed to the local minimizer
(`minimize`). Some important options could be:
``method`` for the minimizer method to use and ``args`` for
objective function additional arguments.
initial_temp : float, optional
The initial temperature, use higher values to facilitates a wider
search of the energy landscape, allowing dual_annealing to escape
local minima that it is trapped in. Default value is 5230. Range is
(0.01, 5.e4].
restart_temp_ratio : float, optional
During the annealing process, temperature is decreasing, when it
reaches ``initial_temp * restart_temp_ratio``, the reannealing process
is triggered. Default value of the ratio is 2e-5. Range is (0, 1).
visit : float, optional
Parameter for visiting distribution. Default value is 2.62. Higher
values give the visiting distribution a heavier tail, this makes
the algorithm jump to a more distant region. The value range is (0, 3].
accept : float, optional
Parameter for acceptance distribution. It is used to control the
probability of acceptance. The lower the acceptance parameter, the
smaller the probability of acceptance. Default value is -5.0 with
a range (-1e4, -5].
maxfun : int, optional
Soft limit for the number of objective function calls. If the
algorithm is in the middle of a local search, this number will be
exceeded, the algorithm will stop just after the local search is
done. Default value is 1e7.
seed : {int or `numpy.random.RandomState` instance}, optional
If `seed` is not specified the `numpy.random.RandomState` singleton is
used.
If `seed` is an int, a new ``RandomState`` instance is used,
seeded with `seed`.
If `seed` is already a ``RandomState`` instance, then that
instance is used.
Specify `seed` for repeatable minimizations. The random numbers
generated with this seed only affect the visiting distribution
function and new coordinates generation.
no_local_search : bool, optional
If `no_local_search` is set to True, a traditional Generalized
Simulated Annealing will be performed with no local search
strategy applied.
callback : callable, optional
A callback function with signature ``callback(x, f, context)``,
which will be called for all minima found.
``x`` and ``f`` are the coordinates and function value of the
latest minimum found, and ``context`` has value in [0, 1, 2], with the
following meaning:
- 0: minimum detected in the annealing process.
- 1: detection occured in the local search process.
- 2: detection done in the dual annealing process.
If the callback implementation returns True, the algorithm will stop.
Returns
-------
res : OptimizeResult
The optimization result represented as a `OptimizeResult` object.
Important attributes are: ``x`` the solution array, ``fun`` the value
of the function at the solution, and ``message`` which describes the
cause of the termination.
See `OptimizeResult` for a description of other attributes.
Notes
-----
This function implements the Dual Annealing optimization. This stochastic
approach derived from [3]_ combines the generalization of CSA (Classical
Simulated Annealing) and FSA (Fast Simulated Annealing) [1]_ [2]_ coupled
to a strategy for applying a local search on accepted locations [4]_.
An alternative implementation of this same algorithm is described in [5]_
and benchmarks are presented in [6]_. This approach introduces an advanced
method to refine the solution found by the generalized annealing
#.........这里部分代码省略.........