本文整理汇总了Python中sandbox.util.SparseUtils.SparseUtils.submatrix方法的典型用法代码示例。如果您正苦于以下问题:Python SparseUtils.submatrix方法的具体用法?Python SparseUtils.submatrix怎么用?Python SparseUtils.submatrix使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sandbox.util.SparseUtils.SparseUtils
的用法示例。
在下文中一共展示了SparseUtils.submatrix方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: modelSelect
# 需要导入模块: from sandbox.util.SparseUtils import SparseUtils [as 别名]
# 或者: from sandbox.util.SparseUtils.SparseUtils import submatrix [as 别名]
def modelSelect(self, X):
"""
Perform model selection on X and return the best parameters.
"""
m, n = X.shape
cvInds = Sampling.randCrossValidation(self.folds, X.nnz)
localAucs = numpy.zeros((self.ks.shape[0], self.lmbdas.shape[0], len(cvInds)))
logging.debug("Performing model selection")
paramList = []
for icv, (trainInds, testInds) in enumerate(cvInds):
Util.printIteration(icv, 1, self.folds, "Fold: ")
trainX = SparseUtils.submatrix(X, trainInds)
testX = SparseUtils.submatrix(X, testInds)
testOmegaList = SparseUtils.getOmegaList(testX)
for i, k in enumerate(self.ks):
maxLocalAuc = self.copy()
maxLocalAuc.k = k
paramList.append((trainX, testX, testOmegaList, maxLocalAuc))
pool = multiprocessing.Pool(processes=self.numProcesses, maxtasksperchild=100)
resultsIterator = pool.imap(localAucsLmbdas, paramList, self.chunkSize)
#import itertools
#resultsIterator = itertools.imap(localAucsLmbdas, paramList)
for icv, (trainInds, testInds) in enumerate(cvInds):
for i, k in enumerate(self.ks):
tempAucs = resultsIterator.next()
localAucs[i, :, icv] = tempAucs
pool.terminate()
meanLocalAucs = numpy.mean(localAucs, 2)
stdLocalAucs = numpy.std(localAucs, 2)
logging.debug(meanLocalAucs)
k = self.ks[numpy.unravel_index(numpy.argmax(meanLocalAucs), meanLocalAucs.shape)[0]]
lmbda = self.lmbdas[numpy.unravel_index(numpy.argmax(meanLocalAucs), meanLocalAucs.shape)[1]]
logging.debug("Model parameters: k=" + str(k) + " lmbda=" + str(lmbda))
self.k = k
self.lmbda = lmbda
return meanLocalAucs, stdLocalAucs
示例2: modelSelect
# 需要导入模块: from sandbox.util.SparseUtils import SparseUtils [as 别名]
# 或者: from sandbox.util.SparseUtils.SparseUtils import submatrix [as 别名]
def modelSelect(self, X):
"""
Perform model selection on X and return the best parameters.
"""
m, n = X.shape
cvInds = Sampling.randCrossValidation(self.folds, X.nnz)
precisions = numpy.zeros((self.ks.shape[0], len(cvInds)))
logging.debug("Performing model selection")
paramList = []
for icv, (trainInds, testInds) in enumerate(cvInds):
Util.printIteration(icv, 1, self.folds, "Fold: ")
trainX = SparseUtils.submatrix(X, trainInds)
testX = SparseUtils.submatrix(X, testInds)
testOmegaList = SparseUtils.getOmegaList(testX)
for i, k in enumerate(self.ks):
learner = self.copy()
learner.k = k
paramList.append((trainX, testX, testOmegaList, learner))
#pool = multiprocessing.Pool(processes=self.numProcesses, maxtasksperchild=100)
#resultsIterator = pool.imap(computePrecision, paramList, self.chunkSize)
import itertools
resultsIterator = itertools.imap(computePrecision, paramList)
for icv, (trainInds, testInds) in enumerate(cvInds):
for i, k in enumerate(self.ks):
tempPrecision = resultsIterator.next()
precisions[i, icv] = tempPrecision
#pool.terminate()
meanPrecisions = numpy.mean(precisions, 1)
stdPrecisions = numpy.std(precisions, 1)
logging.debug(meanPrecisions)
k = self.ks[numpy.argmax(meanPrecisions)]
logging.debug("Model parameters: k=" + str(k))
self.k = k
return meanPrecisions, stdPrecisions
示例3: testSubmatrix
# 需要导入模块: from sandbox.util.SparseUtils import SparseUtils [as 别名]
# 或者: from sandbox.util.SparseUtils.SparseUtils import submatrix [as 别名]
def testSubmatrix(self):
import sppy
numRuns = 100
for i in range(numRuns):
m = numpy.random.randint(5, 50)
n = numpy.random.randint(5, 50)
X = scipy.sparse.rand(m, n, 0.5)
X = X.tocsc()
inds1 = numpy.arange(0, X.nnz/2)
inds2 = numpy.arange(X.nnz/2, X.nnz)
X1 = SparseUtils.submatrix(X, inds1)
X2 = SparseUtils.submatrix(X, inds2)
nptst.assert_array_almost_equal((X1+X2).todense(), X.todense())
inds = X.nnz
X1 = SparseUtils.submatrix(X, inds)
nptst.assert_array_almost_equal((X1).todense(), X.todense())
inds = 2
X1 = SparseUtils.submatrix(X, inds)
self.assertTrue(X1.nnz, 2)
#Test with sppy
for i in range(numRuns):
m = numpy.random.randint(5, 50)
n = numpy.random.randint(5, 50)
X = scipy.sparse.rand(m, n, 0.5)
X = X.tocsc()
X = sppy.csarray(X)
inds1 = numpy.arange(0, X.nnz/2)
inds2 = numpy.arange(X.nnz/2, X.nnz)
X1 = SparseUtils.submatrix(X, inds1)
X2 = SparseUtils.submatrix(X, inds2)
nptst.assert_array_almost_equal((X1+X2).toarray(), X.toarray())
示例4: modelSelect
# 需要导入模块: from sandbox.util.SparseUtils import SparseUtils [as 别名]
# 或者: from sandbox.util.SparseUtils.SparseUtils import submatrix [as 别名]
def modelSelect(self, X, rhos, ks, cvInds):
"""
Pick a value of rho based on a single matrix X. We do cross validation
within, and return the best value of lambda (according to the mean
squared error). The rhos must be in decreasing order and we use
warm restarts.
"""
if (numpy.flipud(numpy.sort(rhos)) != rhos).all():
raise ValueError("rhos must be in descending order")
errors = numpy.zeros((rhos.shape[0], ks.shape[0], len(cvInds)))
if self.metric == "mse":
metricFuction = learnPredictMSE
elif self.metric == "f1" or self.metric == "mrr":
metricFuction = learnPredictRanking
else:
raise ValueError("Unknown metric: " + self.metric)
for i, (trainInds, testInds) in enumerate(cvInds):
Util.printIteration(i, 1, len(cvInds), "Fold: ")
trainX = SparseUtils.submatrix(X, trainInds)
testX = SparseUtils.submatrix(X, testInds)
assert trainX.nnz == trainInds.shape[0]
assert testX.nnz == testInds.shape[0]
#nptst.assert_array_almost_equal((testX+trainX).data, X.data)
paramList = []
for m, k in enumerate(ks):
learner = self.copy()
learner.updateAlg="initial"
learner.setK(k)
paramList.append((learner, trainX, testX, rhos))
if self.numProcesses != 1:
pool = multiprocessing.Pool(processes=multiprocessing.cpu_count()/2, maxtasksperchild=10)
results = pool.imap(metricFuction, paramList)
else:
results = itertools.imap(metricFuction, paramList)
for m, rhoErrors in enumerate(results):
errors[:, m, i] = rhoErrors
if self.numProcesses != 1:
pool.terminate()
meanMetrics = errors.mean(2)
stdMetrics = errors.std(2)
logging.debug(meanMetrics)
#Set the parameters
if self.metric == "mse":
self.setRho(rhos[numpy.unravel_index(numpy.argmin(meanMetrics), meanMetrics.shape)[0]])
self.setK(ks[numpy.unravel_index(numpy.argmin(meanMetrics), meanMetrics.shape)[1]])
elif self.metric == "f1" or self.metric == "mrr":
self.setRho(rhos[numpy.unravel_index(numpy.argmax(meanMetrics), meanMetrics.shape)[0]])
self.setK(ks[numpy.unravel_index(numpy.argmax(meanMetrics), meanMetrics.shape)[1]])
logging.debug("Model parameters: k=" + str(self.k) + " rho=" + str(self.rho))
return meanMetrics, stdMetrics
示例5: runExperiment
# 需要导入模块: from sandbox.util.SparseUtils import SparseUtils [as 别名]
# 或者: from sandbox.util.SparseUtils.SparseUtils import submatrix [as 别名]
def runExperiment(self):
"""
Run the selected clustering experiments and save results
"""
if self.algoArgs.runSoftImpute:
logging.debug("Running soft impute")
for svdAlg in self.algoArgs.svdAlgs:
if svdAlg == "rsvd" or svdAlg == "rsvdUpdate" or svdAlg == "rsvdUpdate2":
resultsFileName = self.resultsDir + "ResultsSoftImpute_alg=" + svdAlg + "_p=" + str(self.algoArgs.p)+ "_q=" + str(self.algoArgs.q) + "_updateAlg=" + self.algoArgs.updateAlg + ".npz"
else:
resultsFileName = self.resultsDir + "ResultsSoftImpute_alg=" + svdAlg + "_updateAlg=" + self.algoArgs.updateAlg + ".npz"
fileLock = FileLock(resultsFileName)
if not fileLock.isLocked() and not fileLock.fileExists():
fileLock.lock()
try:
learner = IterativeSoftImpute(svdAlg=svdAlg, logStep=self.logStep, kmax=self.algoArgs.kmax, postProcess=self.algoArgs.postProcess, weighted=self.algoArgs.weighted, p=self.algoArgs.p, q=self.algoArgs.q, verbose=self.algoArgs.verbose, updateAlg=self.algoArgs.updateAlg)
if self.algoArgs.modelSelect:
trainIterator = self.getTrainIterator()
#Let's find the optimal lambda using the first matrix
X = trainIterator.next()
logging.debug("Performing model selection, taking subsample of entries of size " + str(self.sampleSize))
X = SparseUtils.submatrix(X, self.sampleSize)
cvInds = Sampling.randCrossValidation(self.algoArgs.folds, X.nnz)
meanErrors, stdErrors = learner.modelSelect(X, self.algoArgs.rhos, self.algoArgs.ks, cvInds)
logging.debug("Mean errors = " + str(meanErrors))
logging.debug("Std errors = " + str(stdErrors))
modelSelectFileName = resultsFileName.replace("Results", "ModelSelect")
numpy.savez(modelSelectFileName, meanErrors, stdErrors)
logging.debug("Saved model selection grid as " + modelSelectFileName)
rho = self.algoArgs.rhos[numpy.unravel_index(numpy.argmin(meanErrors), meanErrors.shape)[0]]
k = self.algoArgs.ks[numpy.unravel_index(numpy.argmin(meanErrors), meanErrors.shape)[1]]
else:
rho = self.algoArgs.rhos[0]
k = self.algoArgs.ks[0]
learner.setK(k)
learner.setRho(rho)
logging.debug(learner)
trainIterator = self.getTrainIterator()
ZIter = learner.learnModel(trainIterator)
self.recordResults(ZIter, learner, resultsFileName)
finally:
fileLock.unlock()
else:
logging.debug("File is locked or already computed: " + resultsFileName)
if self.algoArgs.runSgdMf:
logging.debug("Running SGD MF")
resultsFileName = self.resultsDir + "ResultsSgdMf.npz"
fileLock = FileLock(resultsFileName)
if not fileLock.isLocked() and not fileLock.fileExists():
fileLock.lock()
try:
learner = IterativeSGDNorm2Reg(k=self.algoArgs.ks[0], lmbda=self.algoArgs.lmbdas[0], gamma=self.algoArgs.gammas[0], eps=self.algoArgs.eps)
if self.algoArgs.modelSelect:
# Let's find optimal parameters using the first matrix
learner.modelSelect(self.getTrainIterator().next(), self.algoArgs.ks, self.algoArgs.lmbdas, self.algoArgs.gammas, self.algoArgs.folds)
trainIterator = self.getTrainIterator()
trainIterator = self.getTrainIterator()
ZIter = learner.learnModel(trainIterator)
self.recordResults(ZIter, learner, resultsFileName)
finally:
fileLock.unlock()
else:
logging.debug("File is locked or already computed: " + resultsFileName)
logging.info("All done: see you around!")
示例6: modelSelect
# 需要导入模块: from sandbox.util.SparseUtils import SparseUtils [as 别名]
# 或者: from sandbox.util.SparseUtils.SparseUtils import submatrix [as 别名]
def modelSelect(self, X, ks, lmbdas, gammas, nFolds, maxNTry=5):
"""
Choose parameters based on a single matrix X. We do cross validation
within, and set parameters according to the mean squared error.
Return nothing.
"""
logging.debug("Performing model selection")
# usefull
X = X.tocoo()
gc.collect()
nK = len(ks)
nLmbda = len(lmbdas)
nGamma = len(gammas)
nLG = nLmbda * nGamma
errors = scipy.zeros((nK, nLmbda, nGamma, nFolds))
# generate cross validation sets
cvInds = Sampling.randCrossValidation(nFolds, X.nnz)
# compute error for each fold / setting
for icv, (trainInds, testInds) in enumerate(cvInds):
Util.printIteration(icv, 1, nFolds, "Fold: ")
trainX = SparseUtils.submatrix(X, trainInds)
testX = SparseUtils.submatrix(X, testInds)
assert trainX.nnz == trainInds.shape[0]
assert testX.nnz == testInds.shape[0]
nptst.assert_array_almost_equal((testX+trainX).data, X.data)
paramList = []
for ik, k in enumerate(ks):
for ilmbda, lmbda in enumerate(lmbdas):
for igamma, gamma in enumerate(gammas):
paramList.append((trainX, testX, k, lmbda, gamma, maxNTry))
# ! Remark !
# we can parallelize the run of parameters easely.
# parallelize the run of cv-folds is not done as it is much more
# memory-consuming
# parallel version (copied from IteraticeSoftImpute, but not tested)
#pool = multiprocessing.Pool(processes=multiprocessing.cpu_count()/2, maxtasksperchild=10)
#results = pool.imap(self.learnPredict, paramList)
#pool.terminate()
# non-parallel version
results = scipy.array(list(itertools.starmap(self.learnPredict, paramList)))
errors[:, :, :, icv] = scipy.array(results).reshape((nK, nLmbda, nGamma))
# compute cross validation error for each setting
errors[errors == float("inf")] = errors[errors != float("inf")].max()
errors[numpy.isnan(errors)] = numpy.max(errors[numpy.logical_not(numpy.isnan(errors))])
meanErrors = errors.mean(3)
stdErrors = errors.std(3)
logging.debug("Mean errors given (k, lambda, gamma):")
logging.debug(meanErrors)
logging.debug("... with standard deviation:")
logging.debug(stdErrors)
# keep the best
iMin = meanErrors.argmin()
kMin = ks[int(scipy.floor(iMin/(nLG)))]
lmbdaMin = lmbdas[int(scipy.floor((iMin%nLG)/nGamma))]
gammaMin = gammas[int(scipy.floor(iMin%nGamma))]
logging.debug("argmin: (k, lambda, gamma) = (" + str(kMin) + ", " + str(lmbdaMin) + ", " + str(gammaMin) + ")")
logging.debug("min = " + str(meanErrors[int(scipy.floor(iMin/(nLG))), int(scipy.floor((iMin%nLG)/nGamma)), int(scipy.floor(iMin%nGamma))]))
self.baseLearner.k = kMin
self.baseLearner.lmbda = lmbdaMin
self.baseLearner.gamma = gammaMin
return