当前位置: 首页>>代码示例>>Python>>正文


Python SparseUtils.norm方法代码示例

本文整理汇总了Python中sandbox.util.SparseUtils.SparseUtils.norm方法的典型用法代码示例。如果您正苦于以下问题:Python SparseUtils.norm方法的具体用法?Python SparseUtils.norm怎么用?Python SparseUtils.norm使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sandbox.util.SparseUtils.SparseUtils的用法示例。


在下文中一共展示了SparseUtils.norm方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testMatrixApprox

# 需要导入模块: from sandbox.util.SparseUtils import SparseUtils [as 别名]
# 或者: from sandbox.util.SparseUtils.SparseUtils import norm [as 别名]
    def testMatrixApprox(self):
        tol = 10**-6 
        A = numpy.random.rand(10, 10)
        A = A.dot(A.T)

        n = 5
        inds = numpy.sort(numpy.random.permutation(A.shape[0])[0:n])
        AHat = Nystrom.matrixApprox(A, inds)

        n = 10
        AHat2 = Nystrom.matrixApprox(A, n)
        self.assertTrue(numpy.linalg.norm(A - AHat2) < numpy.linalg.norm(A - AHat))
        self.assertTrue(numpy.linalg.norm(A - AHat2) < tol)

        #Test on a sparse matrix
        As = scipy.sparse.csr_matrix(A)
        n = 5
        inds = numpy.sort(numpy.random.permutation(A.shape[0])[0:n])
        AHat = Nystrom.matrixApprox(As, inds)

        n = 10
        AHat2 = Nystrom.matrixApprox(As, n)
        self.assertTrue(SparseUtils.norm(As - AHat2) < SparseUtils.norm(As - AHat))
        self.assertTrue(SparseUtils.norm(As - AHat2) < tol)

        #Compare dense and sparse solutions
        for n in range(1, 9):
            inds = numpy.sort(numpy.random.permutation(A.shape[0])[0:n])
            AHats = Nystrom.matrixApprox(As, inds)
            AHat = Nystrom.matrixApprox(A, inds)

            self.assertTrue(numpy.linalg.norm(AHat - numpy.array(AHats.todense())) < tol)
开发者ID:charanpald,项目名称:sandbox,代码行数:34,代码来源:NystromTest.py

示例2: learnModel2

# 需要导入模块: from sandbox.util.SparseUtils import SparseUtils [as 别名]
# 或者: from sandbox.util.SparseUtils.SparseUtils import norm [as 别名]
 def learnModel2(self, X):
     """
     Learn the matrix completion using a sparse matrix X. This is the simple 
     version of the soft impute algorithm in which we store the entire 
     matrices, newZ and oldZ. 
     """
     #if not scipy.sparse.isspmatrix_lil(X):
     #    raise ValueError("Input matrix must be lil_matrix")
         
     oldZ = scipy.sparse.lil_matrix(X.shape)
     omega = X.nonzero()
     tol = 10**-6
      
     ZList = []
     
     for rho in self.rhos:
         gamma = self.eps + 1
         i = 0
         while gamma > self.eps:
             Y = oldZ.copy()
             Y[omega] = 0
             Y = X + Y
             Y = Y.tocsc()
             U, s, V = ExpSU.SparseUtils.svdSoft(Y, rho)
             #Get an "invalid value encountered in sqrt" warning sometimes
             newZ = scipy.sparse.lil_matrix((U*s).dot(V.T))
             
             oldZ = oldZ.tocsr()
             normOldZ = SparseUtils.norm(oldZ)**2
             normNewZmOldZ = SparseUtils.norm(newZ - oldZ)**2               
             
             #We can get newZ == oldZ in which case we break
             if normNewZmOldZ < tol: 
                 gamma = 0
             elif abs(normOldZ) < tol:
                 gamma = self.eps + 1 
             else: 
                 gamma = normNewZmOldZ/normOldZ
             
             oldZ = newZ.copy()
             
             logging.debug("Iteration " + str(i) + " gamma="+str(gamma)) 
             i += 1
         
         logging.debug("Number of iterations for lambda="+str(rho) + ": " + str(i))
         ZList.append(newZ)
     
     if self.rhos.shape[0] != 1:
         return ZList
     else:
         return ZList[0]
开发者ID:charanpald,项目名称:sandbox,代码行数:53,代码来源:SoftImpute.py

示例3: testNorm

# 需要导入模块: from sandbox.util.SparseUtils import SparseUtils [as 别名]
# 或者: from sandbox.util.SparseUtils.SparseUtils import norm [as 别名]
    def testNorm(self):
        numRows = 10
        numCols = 10

        for k in range(10):
            A = scipy.sparse.rand(numRows, numCols, 0.1, "csr")

            norm = SparseUtils.norm(A)

            norm2 = 0
            for i in range(numRows):
                for j in range(numCols):
                    norm2 += A[i, j]**2

            norm2 = numpy.sqrt(norm2)
            norm3 = numpy.linalg.norm(numpy.array(A.todense()))
            self.assertAlmostEquals(norm, norm2)
            self.assertAlmostEquals(norm, norm3)
开发者ID:charanpald,项目名称:sandbox,代码行数:20,代码来源:SparseUtilsTest.py


注:本文中的sandbox.util.SparseUtils.SparseUtils.norm方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。