本文整理汇总了Python中sandbox.util.Sampling.Sampling.shuffleSplit方法的典型用法代码示例。如果您正苦于以下问题:Python Sampling.shuffleSplit方法的具体用法?Python Sampling.shuffleSplit怎么用?Python Sampling.shuffleSplit使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sandbox.util.Sampling.Sampling
的用法示例。
在下文中一共展示了Sampling.shuffleSplit方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testShuffleSplit
# 需要导入模块: from sandbox.util.Sampling import Sampling [as 别名]
# 或者: from sandbox.util.Sampling.Sampling import shuffleSplit [as 别名]
def testShuffleSplit(self):
numExamples = 10
folds = 5
indices = Sampling.shuffleSplit(folds, numExamples)
for i in range(folds):
self.assertTrue((numpy.union1d(indices[i][0], indices[i][1]) == numpy.arange(numExamples)).all())
indices = Sampling.shuffleSplit(folds, numExamples, 0.5)
trainSize = numExamples*0.5
for i in range(folds):
self.assertTrue((numpy.union1d(indices[i][0], indices[i][1]) == numpy.arange(numExamples)).all())
self.assertTrue(indices[i][0].shape[0] == trainSize)
indices = Sampling.shuffleSplit(folds, numExamples, 0.55)
示例2: processSimpleDataset
# 需要导入模块: from sandbox.util.Sampling import Sampling [as 别名]
# 或者: from sandbox.util.Sampling.Sampling import shuffleSplit [as 别名]
def processSimpleDataset(name, numRealisations, split, ext=".csv", delimiter=",", usecols=None, skiprows=1, converters=None):
numpy.random.seed(21)
dataDir = PathDefaults.getDataDir() + "modelPenalisation/regression/"
fileName = dataDir + name + ext
print("Loading data from file " + fileName)
outputDir = PathDefaults.getDataDir() + "modelPenalisation/regression/" + name + "/"
XY = numpy.loadtxt(fileName, delimiter=delimiter, skiprows=skiprows, usecols=usecols, converters=converters)
X = XY[:, :-1]
y = XY[:, -1]
idx = Sampling.shuffleSplit(numRealisations, X.shape[0], split)
preprocessSave(X, y, outputDir, idx)
示例3: processParkinsonsDataset
# 需要导入模块: from sandbox.util.Sampling import Sampling [as 别名]
# 或者: from sandbox.util.Sampling.Sampling import shuffleSplit [as 别名]
def processParkinsonsDataset(name, numRealisations):
numpy.random.seed(21)
dataDir = PathDefaults.getDataDir() + "modelPenalisation/regression/"
fileName = dataDir + name + ".data"
XY = numpy.loadtxt(fileName, delimiter=",", skiprows=1)
inds = list(set(range(XY.shape[1])) - set([5, 6]))
X = XY[:, inds]
y1 = XY[:, 5]
y2 = XY[:, 6]
#We don't keep whole collections of patients
split = 0.5
idx = Sampling.shuffleSplit(numRealisations, X.shape[0], split)
outputDir = PathDefaults.getDataDir() + "modelPenalisation/regression/" + name + "-motor/"
preprocessSave(X, y1, outputDir, idx)
outputDir = PathDefaults.getDataDir() + "modelPenalisation/regression/" + name + "-total/"
preprocessSave(X, y2, outputDir, idx)