当前位置: 首页>>代码示例>>Python>>正文


Python Sampling.sampleUsers2方法代码示例

本文整理汇总了Python中sandbox.util.Sampling.Sampling.sampleUsers2方法的典型用法代码示例。如果您正苦于以下问题:Python Sampling.sampleUsers2方法的具体用法?Python Sampling.sampleUsers2怎么用?Python Sampling.sampleUsers2使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sandbox.util.Sampling.Sampling的用法示例。


在下文中一共展示了Sampling.sampleUsers2方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: testSampleUsers2

# 需要导入模块: from sandbox.util.Sampling import Sampling [as 别名]
# 或者: from sandbox.util.Sampling.Sampling import sampleUsers2 [as 别名]
    def testSampleUsers2(self): 
        m = 10
        n = 15
        r = 5 
        u = 0.3
        w = 1-u
        X, U, s, V, wv = SparseUtils.generateSparseBinaryMatrix((m,n), r, w, csarray=True, verbose=True, indsPerRow=200)

        k = X.nnz+100
        X2, userInds = Sampling.sampleUsers2(X, k)

        nptst.assert_array_equal(X.toarray(), X2.toarray())
        
        #Test pruning of cols 
        k = 500
        m = 100
        n = 500
        u = 0.1
        w = 1 - u
        X, U, s, V, wv = SparseUtils.generateSparseBinaryMatrix((m,n), r, w, csarray=True, verbose=True, indsPerRow=200)
        numpy.random.seed(21)
        X2, userInds = Sampling.sampleUsers2(X, k, prune=True)
        nnz1 = X2.nnz
        self.assertTrue((X2.sum(0)!=0).all())

        numpy.random.seed(21)
        X2, userInds = Sampling.sampleUsers2(X, k, prune=False)
        nnz2 = X2.nnz
        self.assertEquals(nnz1, nnz2)

        numRuns = 50
        for i in range(numRuns): 
            m = numpy.random.randint(10, 100)
            n = numpy.random.randint(10, 100)
            k = 500

            X, U, s, V, wv = SparseUtils.generateSparseBinaryMatrix((m,n), r, w, csarray=True, verbose=True, indsPerRow=200)

            X2, userInds = Sampling.sampleUsers2(X, k)
            

            self.assertTrue((X.dot(X.T)!=numpy.zeros((m, m)).all()))
            self.assertTrue((X2.toarray() == X.toarray()[userInds, :]).all())
            self.assertEquals(X.toarray()[userInds, :].nonzero()[0].shape[0], X2.nnz)
开发者ID:charanpald,项目名称:sandbox,代码行数:46,代码来源:SamplingTest.py

示例2: getDataset

# 需要导入模块: from sandbox.util.Sampling import Sampling [as 别名]
# 或者: from sandbox.util.Sampling.Sampling import sampleUsers2 [as 别名]
 def getDataset(dataset, nnz=20000): 
     """
     Return a dataset by name
     """        
     
     if dataset == "synthetic": 
         X, U, V = DatasetUtils.syntheticDataset1()
     elif dataset == "synthetic2": 
         X = DatasetUtils.syntheticDataset2()
     elif dataset == "movielens": 
         X = DatasetUtils.movieLens()
     elif dataset == "epinions": 
         X = DatasetUtils.epinions()
         X, userInds = Sampling.sampleUsers2(X, nnz, prune=True)    
     elif dataset == "flixster": 
         X = DatasetUtils.flixster()
         X, userInds = Sampling.sampleUsers2(X, nnz, prune=True)
     else: 
         raise ValueError("Unknown dataset: " + dataset)
         
     return X
开发者ID:charanpald,项目名称:wallhack,代码行数:23,代码来源:DatasetUtils.py

示例3: FileLock

# 需要导入模块: from sandbox.util.Sampling import Sampling [as 别名]
# 或者: from sandbox.util.Sampling.Sampling import sampleUsers2 [as 别名]
    similaritiesFileName = resultsDir + "Recommendations_" + learnerName + "_" + dataset + ".csv" 
    fileLock = FileLock(outputFilename)  
        
    if not (fileLock.isLocked() or fileLock.fileExists()) or overwrite: 
        fileLock.lock()       
        
        logging.debug(learner)      
    
        try: 
            #Do some recommendation 
            if type(learner) == IterativeSoftImpute:  
                trainX = X.toScipyCsc()
                trainIterator = iter([trainX])
                         
                if modelSelect: 
                    modelSelectX, userInds = Sampling.sampleUsers2(X, modelSelectSamples)
                    modelSelectX = modelSelectX.toScipyCsc()                            
                    cvInds = Sampling.randCrossValidation(folds, modelSelectX.nnz)
                    meanMetrics, stdMetrics = learner.modelSelect2(modelSelectX, rhosSi, ks, cvInds)
                
                ZList = learner.learnModel(trainIterator)    
                U, s, V = ZList.next()
                U = U*s
            elif type(learner) == WeightedMf:  
                trainX = X.toScipyCsr()

                if modelSelect:                     
                    modelSelectX, userInds = Sampling.sampleUsers2(X, modelSelectSamples)
                    modelSelectX = modelSelectX.toScipyCsc()  
                    meanMetrics, stdMetrics = learner.modelSelect(modelSelectX)                          
                
开发者ID:charanpald,项目名称:wallhack,代码行数:32,代码来源:ContactsRecommenderExp.py

示例4:

# 需要导入模块: from sandbox.util.Sampling import Sampling [as 别名]
# 或者: from sandbox.util.Sampling.Sampling import sampleUsers2 [as 别名]
    fprTrain, tprTrain = MCEvaluator.averageRocCurve(trainX, U, V)
    fprTest, tprTest = MCEvaluator.averageRocCurve(testX, U, V)
        
    return fprTrain, tprTrain, fprTest, tprTest

if saveResults: 
    paramList = []
    chunkSize = 1
    
    U, V = maxLocalAuc.initUV(X)
    
    for loss in losses: 
        for nnz in nnzs: 
            for trainX, testX in trainTestXs: 
                numpy.random.seed(21)
                modelSelectX, userInds = Sampling.sampleUsers2(trainX, nnz*trainX.nnz)
                maxLocalAuc.loss = loss 
                paramList.append((modelSelectX, trainX, testX, maxLocalAuc.copy(), U.copy(), V.copy()))

    pool = multiprocessing.Pool(maxtasksperchild=100, processes=multiprocessing.cpu_count())
    resultsIterator = pool.imap(computeTestAuc, paramList, chunkSize)
    
    #import itertools 
    #resultsIterator = itertools.imap(computeTestAuc, paramList)
    
    meanFprTrains = []
    meanTprTrains = []
    meanFprTests = []
    meanTprTests = []
    
    for loss in losses: 
开发者ID:charanpald,项目名称:wallhack,代码行数:33,代码来源:RegularisationExp3.py

示例5: print

# 需要导入模块: from sandbox.util.Sampling import Sampling [as 别名]
# 或者: from sandbox.util.Sampling.Sampling import sampleUsers2 [as 别名]
maxLocalAuc.numAucSamples = 10
maxLocalAuc.numProcesses = multiprocessing.cpu_count()
maxLocalAuc.numRecordAucSamples = 100
maxLocalAuc.numRowSamples = 15
maxLocalAuc.rate = "constant"
maxLocalAuc.recordStep = 10
maxLocalAuc.rho = 1.0
maxLocalAuc.t0 = 1.0
maxLocalAuc.t0s = 2.0**-numpy.arange(7, 12, 1)
maxLocalAuc.validationSize = 3
maxLocalAuc.validationUsers = 0

if saveResults: 
    X = DatasetUtils.getDataset(dataset, nnz=1000000)
    
    X2, userInds = Sampling.sampleUsers2(X, 500000, prune=True)
    X3, userInds = Sampling.sampleUsers2(X, 200000, prune=True)
    X4, userInds = Sampling.sampleUsers2(X, 100000, prune=True)
    
    X5, userInds = Sampling.sampleUsers2(X, 500000, prune=False)
    X6, userInds = Sampling.sampleUsers2(X, 200000, prune=False)
    X7, userInds = Sampling.sampleUsers2(X, 100000, prune=False)    
    
    print(X.shape, X.nnz)
    
    print(X2.shape, X2.nnz)  
    print(X3.shape, X3.nnz)  
    print(X4.shape, X4.nnz)  
    
    print(X5.shape, X5.nnz)
    print(X6.shape, X6.nnz)
开发者ID:charanpald,项目名称:wallhack,代码行数:33,代码来源:ModelSelectExp.py

示例6: Keyword

# 需要导入模块: from sandbox.util.Sampling import Sampling [as 别名]
# 或者: from sandbox.util.Sampling.Sampling import sampleUsers2 [as 别名]
dataParser.add_argument("--dataset", type=str, help="The dataset to use: either Doc or Keyword (default: %(default)s)", default=dataParser.dataset)
devNull, remainingArgs = dataParser.parse_known_args(namespace=dataArgs)
if dataArgs.help:
    helpParser  = argparse.ArgumentParser(description="", add_help=False, parents=[dataParser, RankingExpHelper.newAlgoParser(defaultAlgoArgs)])
    helpParser.print_help()
    exit()



# print args #
logging.info("Data params:")
keys = list(vars(dataArgs).keys())
keys.sort()
for key in keys:
    logging.info("    " + str(key) + ": " + str(dataArgs.__getattribute__(key)))

logging.info("Creating the exp-runner")

#Load/create the dataset - sample at most a million nnzs
X = DatasetUtils.mendeley(dataset=dataArgs.dataset)
numpy.random.seed(21)
X, userInds = Sampling.sampleUsers2(X, 10**6, prune=True)
m, n = X.shape

dataArgs.extendedDirName = ""
dataArgs.extendedDirName += "MendeleyCoauthors" + dataParser.dataset

rankingExpHelper = RankingExpHelper(remainingArgs, defaultAlgoArgs, dataArgs.extendedDirName)
rankingExpHelper.printAlgoArgs()
rankingExpHelper.runExperiment(X)
开发者ID:charanpald,项目名称:wallhack,代码行数:32,代码来源:MendeleyCoauthorsExp.py

示例7: runExperiment

# 需要导入模块: from sandbox.util.Sampling import Sampling [as 别名]
# 或者: from sandbox.util.Sampling.Sampling import sampleUsers2 [as 别名]
    def runExperiment(self, X):
        """
        Run the selected ranking experiments and save results
        """
        logging.debug("Splitting into train and test sets")
        #Make sure different runs get the same train/test split
        numpy.random.seed(21)
        m, n = X.shape
        #colProbs = (X.sum(0)+1)/float(m+1)
        #colProbs = colProbs**-self.algoArgs.itemExp
        #colProbs = numpy.ones(n)/float(n)
        trainTestXs = Sampling.shuffleSplitRows(X, 1, self.algoArgs.testSize)
        trainX, testX = trainTestXs[0]
        logging.debug("Train X shape and nnz: " + str(trainX.shape) + " " + str(trainX.nnz))
        logging.debug("Test X shape and nnz: " + str(testX.shape) + " " + str(testX.nnz))

        #Have scipy versions of each array
        trainXScipy = trainX.toScipyCsc()
        testXScipy = testX.toScipyCsc()

        if self.algoArgs.runSoftImpute:
            logging.debug("Running soft impute")
            resultsFileName = self.resultsDir + "ResultsSoftImpute.npz"

            fileLock = FileLock(resultsFileName)

            if not (fileLock.isLocked() or fileLock.fileExists()) or self.algoArgs.overwrite:
                fileLock.lock()
                logging.debug("Performing model selection, taking sample size " + str(self.algoArgs.modelSelectSamples))
                modelSelectX, userInds = Sampling.sampleUsers2(trainXScipy, self.algoArgs.modelSelectSamples, prune=True)

                try:
                    learner = IterativeSoftImpute(self.algoArgs.rhoSi, eps=self.algoArgs.epsSi, k=self.algoArgs.k, svdAlg=self.algoArgs.svdAlg, postProcess=self.algoArgs.postProcess, p=self.algoArgs.pSi, q=self.algoArgs.qSi)
                    learner.folds = self.algoArgs.folds
                    learner.metric = self.algoArgs.metric
                    learner.numProcesses = self.algoArgs.processes
                    learner.recommendSize = self.algoArgs.recommendSize
                    learner.validationSize = self.algoArgs.validationSize

                    if self.algoArgs.modelSelect:
                        cvInds = Sampling.randCrossValidation(self.algoArgs.folds, modelSelectX.nnz)
                        meanErrors, stdErrors = learner.modelSelect2(modelSelectX, self.algoArgs.rhosSi, self.algoArgs.ks, cvInds)

                        modelSelectFileName = resultsFileName.replace("Results", "ModelSelect")
                        numpy.savez(modelSelectFileName, meanErrors, stdErrors)
                        logging.debug("Saved model selection grid as " + modelSelectFileName)

                    logging.debug(learner)

                    self.recordResults(X, trainXScipy, testXScipy, learner, resultsFileName)
                finally:
                    fileLock.unlock()
            else:
                logging.debug("File is locked or already computed: " + resultsFileName)

        if self.algoArgs.runMaxLocalAuc:
            logging.debug("Running max local AUC")

            if self.algoArgs.loss != "tanh":
                resultsFileName = self.resultsDir + "ResultsMaxLocalAUC_loss=" + self.algoArgs.loss + ".npz"
            else:
                resultsFileName = self.resultsDir + "ResultsMaxLocalAUC_loss=" + self.algoArgs.loss + "_rho=" + str(self.algoArgs.rhoMlauc) + ".npz"

            fileLock = FileLock(resultsFileName)

            if not (fileLock.isLocked() or fileLock.fileExists()) or self.algoArgs.overwrite:
                fileLock.lock()

                try:
                    learner = MaxLocalAUC(self.algoArgs.k, 1-self.algoArgs.u, lmbdaU=self.algoArgs.lmbdaUMlauc, lmbdaV=self.algoArgs.lmbdaVMlauc, eps=self.algoArgs.epsMlauc, stochastic=not self.algoArgs.fullGradient)

                    learner.alpha = self.algoArgs.alpha
                    learner.alphas = self.algoArgs.alphas
                    learner.eta = self.algoArgs.eta
                    learner.folds = self.algoArgs.folds
                    learner.initialAlg = self.algoArgs.initialAlg
                    learner.itemExpP = self.algoArgs.itemExpP
                    learner.itemExpQ = self.algoArgs.itemExpQ
                    learner.ks = self.algoArgs.ks
                    learner.lmbdas = self.algoArgs.lmbdasMlauc
                    learner.loss = self.algoArgs.loss
                    learner.maxIterations = self.algoArgs.maxIterations
                    learner.maxNorms = self.algoArgs.maxNorms
                    learner.maxNormU = self.algoArgs.maxNorm
                    learner.maxNormV = self.algoArgs.maxNorm
                    learner.metric = self.algoArgs.metric
                    learner.normalise = self.algoArgs.normalise
                    learner.numAucSamples = self.algoArgs.numAucSamples
                    learner.numProcesses = self.algoArgs.processes
                    learner.numRowSamples = self.algoArgs.numRowSamples
                    learner.rate = self.algoArgs.rate
                    learner.recommendSize = self.algoArgs.recommendSize
                    learner.recordStep = self.algoArgs.recordStep
                    learner.rho = self.algoArgs.rhoMlauc
                    learner.rhos = self.algoArgs.rhosMlauc
                    learner.startAverage = self.algoArgs.startAverage
                    learner.t0 = self.algoArgs.t0
                    learner.t0s = self.algoArgs.t0s
                    learner.validationSize = self.algoArgs.validationSize
                    learner.validationUsers = self.algoArgs.validationUsers
#.........这里部分代码省略.........
开发者ID:charanpald,项目名称:wallhack,代码行数:103,代码来源:RankingExpHelper.py


注:本文中的sandbox.util.Sampling.Sampling.sampleUsers2方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。