本文整理汇总了Python中sandbox.util.Parameter.Parameter.checkFloat方法的典型用法代码示例。如果您正苦于以下问题:Python Parameter.checkFloat方法的具体用法?Python Parameter.checkFloat怎么用?Python Parameter.checkFloat使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sandbox.util.Parameter.Parameter
的用法示例。
在下文中一共展示了Parameter.checkFloat方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: setWeight
# 需要导入模块: from sandbox.util.Parameter import Parameter [as 别名]
# 或者: from sandbox.util.Parameter.Parameter import checkFloat [as 别名]
def setWeight(self, weight):
"""
:param weight: the weight on the positive examples between 0 and 1 (the negative weight is 1-weight)
:type weight: :class:`float`
"""
Parameter.checkFloat(weight, 0.0, 1.0)
self.weight = weight
示例2: setSampleSize
# 需要导入模块: from sandbox.util.Parameter import Parameter [as 别名]
# 或者: from sandbox.util.Parameter.Parameter import checkFloat [as 别名]
def setSampleSize(self, sampleSize):
"""
:param sampleSize: The number of examples to randomly sample for each tree.
:type sampleSize: :class:`int`
"""
Parameter.checkFloat(sampleSize, 0.0, 1.0)
self.sampleSize = sampleSize
示例3: __init__
# 需要导入模块: from sandbox.util.Parameter import Parameter [as 别名]
# 或者: from sandbox.util.Parameter.Parameter import checkFloat [as 别名]
def __init__(self, kernel, tau1, tau2):
Parameter.checkFloat(tau1, 0.0, float('inf'))
Parameter.checkFloat(tau2, 0.0, float('inf'))
Parameter.checkClass(kernel, AbstractKernel)
self.tau1 = tau1
self.tau2 = tau2
self.kernel = kernel
示例4: setErrorCost
# 需要导入模块: from sandbox.util.Parameter import Parameter [as 别名]
# 或者: from sandbox.util.Parameter.Parameter import checkFloat [as 别名]
def setErrorCost(self, errorCost):
"""
The penalty on errors on positive labels. The penalty for negative labels
is 1.
"""
Parameter.checkFloat(errorCost, 0.0, 1.0)
self.errorCost = errorCost
示例5: generateGraph
# 需要导入模块: from sandbox.util.Parameter import Parameter [as 别名]
# 或者: from sandbox.util.Parameter.Parameter import checkFloat [as 别名]
def generateGraph(self, alpha, p, dim):
Parameter.checkFloat(alpha, 0.0, float('inf'))
Parameter.checkFloat(p, 0.0, 1.0)
Parameter.checkInt(dim, 0, float('inf'))
numVertices = self.graph.getNumVertices()
self.X = numpy.random.rand(numVertices, dim)
D = KernelUtils.computeDistanceMatrix(numpy.dot(self.X, self.X.T))
P = numpy.exp(-alpha * D)
diagIndices = numpy.array(list(range(0, numVertices)))
P[(diagIndices, diagIndices)] = numpy.zeros(numVertices)
B = numpy.random.rand(numVertices, numVertices) <= P
#Note that B is symmetric - could just go through e.g. upper triangle
for i in range(numpy.nonzero(B)[0].shape[0]):
v1 = numpy.nonzero(B)[0][i]
v2 = numpy.nonzero(B)[1][i]
self.graph.addEdge(v1, v2)
erdosRenyiGenerator = ErdosRenyiGenerator(p)
self.graph = erdosRenyiGenerator.generate(self.graph, False)
return self.graph
示例6: shuffleSplit
# 需要导入模块: from sandbox.util.Parameter import Parameter [as 别名]
# 或者: from sandbox.util.Parameter.Parameter import checkFloat [as 别名]
def shuffleSplit(repetitions, numExamples, trainProportion=None):
"""
Random permutation cross-validation iterator. The training set is sampled
without replacement and of size (repetitions-1)/repetitions of the examples,
and the test set represents the remaining examples. Each repetition is
sampled independently.
:param repetitions: The number of repetitions to perform.
:type repetitions: :class:`int`
:param numExamples: The number of examples.
:type numExamples: :class:`int`
:param trainProp: The size of the training set relative to numExamples, between 0 and 1 or None to use (repetitions-1)/repetitions
:type trainProp: :class:`int`
"""
Parameter.checkInt(numExamples, 2, float('inf'))
Parameter.checkInt(repetitions, 1, float('inf'))
if trainProportion != None:
Parameter.checkFloat(trainProportion, 0.0, 1.0)
if trainProportion == None:
trainSize = int((repetitions-1)*numExamples/repetitions)
else:
trainSize = int(trainProportion*numExamples)
idx = []
for i in range(repetitions):
inds = numpy.random.permutation(numExamples)
trainInds = inds[0:trainSize]
testInds = inds[trainSize:]
idx.append((trainInds, testInds))
return idx
示例7: binaryBootstrapError
# 需要导入模块: from sandbox.util.Parameter import Parameter [as 别名]
# 或者: from sandbox.util.Parameter.Parameter import checkFloat [as 别名]
def binaryBootstrapError(testY, predTestY, trainY, predTrainY, weight):
"""
Evaluate an error in conjunction with a bootstrap method by computing
w*testErr + (1-w)*trainErr
"""
Parameter.checkFloat(weight, 0.0, 1.0)
return weight*Evaluator.binaryError(testY, predTestY) + (1-weight)*Evaluator.binaryError(trainY, predTrainY)
示例8: __init__
# 需要导入模块: from sandbox.util.Parameter import Parameter [as 别名]
# 或者: from sandbox.util.Parameter.Parameter import checkFloat [as 别名]
def __init__(self, kernelX, tau1, tau2):
Parameter.checkFloat(tau1, 0.0, 1.0)
Parameter.checkFloat(tau2, 0.0, 1.0)
Parameter.checkClass(kernelX, AbstractKernel)
self.kernelX = kernelX
self.tau1 = tau1
self.tau2 = tau2
示例9: setC
# 需要导入模块: from sandbox.util.Parameter import Parameter [as 别名]
# 或者: from sandbox.util.Parameter.Parameter import checkFloat [as 别名]
def setC(self, C):
try:
from sklearn.svm import SVC
except:
raise
Parameter.checkFloat(C, 0.0, float("inf"))
self.C = C
self.__updateParams()
示例10: setInfected
# 需要导入模块: from sandbox.util.Parameter import Parameter [as 别名]
# 或者: from sandbox.util.Parameter.Parameter import checkFloat [as 别名]
def setInfected(self, vertexInd, time):
Parameter.checkIndex(vertexInd, 0, self.getNumVertices())
Parameter.checkFloat(time, 0.0, float('inf'))
if self.V[vertexInd, HIVVertices.stateIndex] == HIVVertices.infected:
raise ValueError("Person is already infected")
self.V[vertexInd, HIVVertices.stateIndex] = HIVVertices.infected
self.V[vertexInd, HIVVertices.infectionTimeIndex] = time
示例11: setB
# 需要导入模块: from sandbox.util.Parameter import Parameter [as 别名]
# 或者: from sandbox.util.Parameter.Parameter import checkFloat [as 别名]
def setB(self, b):
"""
Set the b parameter.
:param b: kernel bias parameter.
:type b: :class:`float`
"""
Parameter.checkFloat(b, 0.0, float('inf'))
self.b = b
示例12: setFeatureSize
# 需要导入模块: from sandbox.util.Parameter import Parameter [as 别名]
# 或者: from sandbox.util.Parameter.Parameter import checkFloat [as 别名]
def setFeatureSize(self, featureSize):
"""
Set the number of features to use for node computation.
:param featureSize: the proportion of features to randomly select to compute each node. If none then use sqrt(X.shape[1]) features.
:type featureSize: :class:`float`
"""
if featureSize != None:
Parameter.checkFloat(featureSize, 0.0, 1.0)
self.featureSize = featureSize
示例13: createDiscTruncNormParam
# 需要导入模块: from sandbox.util.Parameter import Parameter [as 别名]
# 或者: from sandbox.util.Parameter.Parameter import checkFloat [as 别名]
def createDiscTruncNormParam(self, sigma, mode, upper, lower=0):
"""
Discrete truncated norm parameter
"""
Parameter.checkFloat(sigma, 0.0, float('inf'))
Parameter.checkFloat(mode, 0.0, float('inf'))
a = (lower-mode)/sigma
b = (upper-mode)/sigma
priorDist = lambda: round(stats.truncnorm.rvs(a, b, loc=mode, scale=sigma))
priorDensity = lambda x: stats.truncnorm.pdf(x, a, b, loc=mode, scale=sigma)
return priorDist, priorDensity
示例14: createTruncNormParam
# 需要导入模块: from sandbox.util.Parameter import Parameter [as 别名]
# 或者: from sandbox.util.Parameter.Parameter import checkFloat [as 别名]
def createTruncNormParam(self, sigma, mode):
"""
Truncated norm parameter between 0 and 1
"""
Parameter.checkFloat(sigma, 0.0, 1.0)
Parameter.checkFloat(mode, 0.0, float('inf'))
a = -mode/sigma
b = (1-mode)/sigma
priorDist = lambda: stats.truncnorm.rvs(a, b, loc=mode, scale=sigma)
priorDensity = lambda x: stats.truncnorm.pdf(x, a, b, loc=mode, scale=sigma)
return priorDist, priorDensity
示例15: setDetected
# 需要导入模块: from sandbox.util.Parameter import Parameter [as 别名]
# 或者: from sandbox.util.Parameter.Parameter import checkFloat [as 别名]
def setDetected(self, vertexInd, time, detectionType):
Parameter.checkIndex(vertexInd, 0, self.getNumVertices())
Parameter.checkFloat(time, 0.0, float('inf'))
if detectionType not in [HIVVertices.randomDetect, HIVVertices.contactTrace]:
raise ValueError("Invalid detection type : " + str(detectionType))
if self.V[vertexInd, HIVVertices.stateIndex] != HIVVertices.infected:
raise ValueError("Person must be infected to be detected")
self.V[vertexInd, HIVVertices.stateIndex] = HIVVertices.removed
self.V[vertexInd, HIVVertices.detectionTimeIndex] = time
self.V[vertexInd, HIVVertices.detectionTypeIndex] = detectionType