当前位置: 首页>>代码示例>>Python>>正文


Python PolynomialRing.variable_names方法代码示例

本文整理汇总了Python中sage.rings.polynomial.polynomial_ring_constructor.PolynomialRing.variable_names方法的典型用法代码示例。如果您正苦于以下问题:Python PolynomialRing.variable_names方法的具体用法?Python PolynomialRing.variable_names怎么用?Python PolynomialRing.variable_names使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.rings.polynomial.polynomial_ring_constructor.PolynomialRing的用法示例。


在下文中一共展示了PolynomialRing.variable_names方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: dual

# 需要导入模块: from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing [as 别名]
# 或者: from sage.rings.polynomial.polynomial_ring_constructor.PolynomialRing import variable_names [as 别名]
    def dual(self):
        r"""
        Return the projective dual of the given subscheme of projective space.

        INPUT:

        - ``X`` -- A subscheme of projective space. At present, ``X`` is
          required to be an irreducible and reduced hypersurface defined
          over `\QQ` or a finite field.

        OUTPUT:

        - The dual of ``X`` as a subscheme of the dual projective space.

        EXAMPLES:

        The dual of a smooth conic in the plane is also a smooth conic::

            sage: R.<x, y, z> = QQ[]
            sage: P.<x, y, z> = ProjectiveSpace(2, QQ)
            sage: I = R.ideal(x^2 + y^2 + z^2)
            sage: X = P.subscheme(I)
            sage: X.dual()
            Closed subscheme of Projective Space of dimension 2 over Rational Field defined by:
              y0^2 + y1^2 + y2^2

        The dual of the twisted cubic curve in projective 3-space is a singular
        quartic surface. In the following example, we compute the dual of this
        surface, which by double duality is equal to the twisted cubic itself.
        The output is the twisted cubic as an intersection of three quadrics::

            sage: R.<x, y, z, w> = QQ[]
            sage: P.<x, y, z, w> = ProjectiveSpace(3, QQ)
            sage: I = R.ideal(y^2*z^2 - 4*x*z^3 - 4*y^3*w + 18*x*y*z*w - 27*x^2*w^2)
            sage: X = P.subscheme(I)
            sage: X.dual()
            Closed subscheme of Projective Space of dimension 3 over
            Rational Field defined by:
              y2^2 - y1*y3,
              y1*y2 - y0*y3,
              y1^2 - y0*y2

        The singular locus of the quartic surface in the last example
        is itself supported on a twisted cubic::

            sage: X.Jacobian().radical()
            Ideal (z^2 - 3*y*w, y*z - 9*x*w, y^2 - 3*x*z) of Multivariate
            Polynomial Ring in x, y, z, w over Rational Field

        An example over a finite field::

            sage: R = PolynomialRing(GF(61), 'a,b,c')
            sage: P.<a, b, c> = ProjectiveSpace(2, R.base_ring())
            sage: X = P.subscheme(R.ideal(a*a+2*b*b+3*c*c))
            sage: X.dual()
            Closed subscheme of Projective Space of dimension 2 over
            Finite Field of size 61 defined by:
            y0^2 - 30*y1^2 - 20*y2^2

        TESTS::

            sage: R = PolynomialRing(Qp(3), 'a,b,c')
            sage: P.<a, b, c> = ProjectiveSpace(2, R.base_ring())
            sage: X = P.subscheme(R.ideal(a*a+2*b*b+3*c*c))
            sage: X.dual()
            Traceback (most recent call last):
            ...
            NotImplementedError: base ring must be QQ or a finite field
        """
        from sage.libs.singular.function_factory import ff

        K = self.base_ring()
        if not(is_RationalField(K) or is_FiniteField(K)):
            raise NotImplementedError("base ring must be QQ or a finite field")
        I = self.defining_ideal()
        m = I.ngens()
        n = I.ring().ngens() - 1
        if (m != 1 or (n < 1) or I.is_zero()
            or I.is_trivial() or not I.is_prime()):
            raise NotImplementedError("At the present, the method is only"
                                      " implemented for irreducible and"
                                      " reduced hypersurfaces and the given"
                                      " list of generators for the ideal must"
                                      " have exactly one element.")
        R = PolynomialRing(K, 'x', n + 1)
        from sage.schemes.projective.projective_space import ProjectiveSpace
        Pd = ProjectiveSpace(n, K, 'y')
        Rd = Pd.coordinate_ring()
        x = R.variable_names()
        y = Rd.variable_names()
        S = PolynomialRing(K, x + y + ('t',))
        if S.has_coerce_map_from(I.ring()):
            T = PolynomialRing(K, 'w', n + 1)
            I_S = (I.change_ring(T)).change_ring(S)
        else:
            I_S = I.change_ring(S)
        f_S = I_S.gens()[0]
        z = S.gens()
        J = I_S
        for i in range(n + 1):
#.........这里部分代码省略.........
开发者ID:saraedum,项目名称:sage-renamed,代码行数:103,代码来源:projective_subscheme.py

示例2: Chow_form

# 需要导入模块: from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing [as 别名]
# 或者: from sage.rings.polynomial.polynomial_ring_constructor.PolynomialRing import variable_names [as 别名]
    def Chow_form(self):
        r"""
        Returns the Chow form associated to this subscheme.

        For a `k`-dimensional subvariety of `\mathbb{P}^N` of degree `D`.
        The `(N-k-1)`-dimensional projective linear subspaces of `\mathbb{P}^N`
        meeting `X` form a hypersurface in the Grassmannian `G(N-k-1,N)`.
        The homogeneous form of degree `D` defining this hypersurface in Plucker
        coordinates is called the Chow form of `X`.

        The base ring needs to be a number field, finite field, or `\QQbar`.

        ALGORITHM:

        For a `k`-dimension subscheme `X` consider the `k+1` linear forms
        `l_i = u_{i0}x_0 + \cdots + u_{in}x_n`. Let `J` be the ideal in the
        polynomial ring `K[x_i,u_{ij}]` defined by the equations of `X` and the `l_i`.
        Let `J'` be the saturation of `J` with respect to the irrelevant ideal of
        the ambient projective space of `X`. The elimination ideal `I = J' \cap K[u_{ij}]`
        is a principal ideal, let `R` be its generator. The Chow form is obtained by
        writing `R` as a polynomial in Plucker coordinates (i.e. bracket polynomials).
        [DalbecSturmfels]_.

        OUTPUT: a homogeneous polynomial.

        REFERENCES:

        .. [DalbecSturmfels] J. Dalbec and B. Sturmfels. Invariant methods in discrete and computational geometry,
           chapter Introduction to Chow forms, pages 37-58. Springer Netherlands, 1994.

        EXAMPLES::

            sage: P.<x0,x1,x2,x3> = ProjectiveSpace(GF(17), 3)
            sage: X = P.subscheme([x3+x1,x2-x0,x2-x3])
            sage: X.Chow_form()
            t0 - t1 + t2 + t3

        ::

            sage: P.<x0,x1,x2,x3> = ProjectiveSpace(QQ,3)
            sage: X = P.subscheme([x3^2 -101*x1^2 - 3*x2*x0])
            sage: X.Chow_form()
            t0^2 - 101*t2^2 - 3*t1*t3

        ::

            sage: P.<x0,x1,x2,x3>=ProjectiveSpace(QQ,3)
            sage: X = P.subscheme([x0*x2-x1^2, x0*x3-x1*x2, x1*x3-x2^2])
            sage: Ch = X.Chow_form(); Ch
            t2^3 + 2*t2^2*t3 + t2*t3^2 - 3*t1*t2*t4 - t1*t3*t4 + t0*t4^2 + t1^2*t5
            sage: Y = P.subscheme_from_Chow_form(Ch, 1); Y
            Closed subscheme of Projective Space of dimension 3 over Rational Field
            defined by:
              x2^2*x3 - x1*x3^2,
              -x2^3 + x0*x3^2,
              -x2^2*x3 + x1*x3^2,
              x1*x2*x3 - x0*x3^2,
              3*x1*x2^2 - 3*x0*x2*x3,
              -2*x1^2*x3 + 2*x0*x2*x3,
              -3*x1^2*x2 + 3*x0*x1*x3,
              x1^3 - x0^2*x3,
              x2^3 - x1*x2*x3,
              -3*x1*x2^2 + 2*x1^2*x3 + x0*x2*x3,
              2*x0*x2^2 - 2*x0*x1*x3,
              3*x1^2*x2 - 2*x0*x2^2 - x0*x1*x3,
              -x0*x1*x2 + x0^2*x3,
              -x0*x1^2 + x0^2*x2,
              -x1^3 + x0*x1*x2,
              x0*x1^2 - x0^2*x2
            sage: I = Y.defining_ideal()
            sage: I.saturation(I.ring().ideal(list(I.ring().gens())))[0]
            Ideal (x2^2 - x1*x3, x1*x2 - x0*x3, x1^2 - x0*x2) of Multivariate
            Polynomial Ring in x0, x1, x2, x3 over Rational Field
        """
        I = self.defining_ideal()
        P = self.ambient_space()
        R = P.coordinate_ring()
        N = P.dimension()+1
        d = self.dimension()
        #create the ring for the generic linear hyperplanes
        # u0x0 + u1x1 + ...
        SS = PolynomialRing(R.base_ring(), 'u', N*(d+1), order='lex')
        vars = SS.variable_names() + R.variable_names()
        S = PolynomialRing(R.base_ring(), vars, order='lex')
        n = S.ngens()
        newcoords = [S.gen(n-N+t) for t in range(N)]
        #map the generators of the subscheme into the ring with the hyperplane variables
        phi = R.hom(newcoords,S)
        phi(self.defining_polynomials()[0])
        #create the dim(X)+1 linear hyperplanes
        l = []
        for i in range(d+1):
            t = 0
            for j in range(N):
                t += S.gen(N*i + j)*newcoords[j]
            l.append(t)
        #intersect the hyperplanes with X
        J = phi(I) + S.ideal(l)
        #saturate the ideal with respect to the irrelevant ideal
        J2 = J.saturation(S.ideal([phi(t) for t in R.gens()]))[0]
#.........这里部分代码省略.........
开发者ID:saraedum,项目名称:sage-renamed,代码行数:103,代码来源:projective_subscheme.py


注:本文中的sage.rings.polynomial.polynomial_ring_constructor.PolynomialRing.variable_names方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。