本文整理汇总了Python中sage.rings.polynomial.polynomial_ring_constructor.PolynomialRing.sum方法的典型用法代码示例。如果您正苦于以下问题:Python PolynomialRing.sum方法的具体用法?Python PolynomialRing.sum怎么用?Python PolynomialRing.sum使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sage.rings.polynomial.polynomial_ring_constructor.PolynomialRing
的用法示例。
在下文中一共展示了PolynomialRing.sum方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: canonical_scheme
# 需要导入模块: from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing [as 别名]
# 或者: from sage.rings.polynomial.polynomial_ring_constructor.PolynomialRing import sum [as 别名]
def canonical_scheme(self, t=None):
"""
Return the canonical scheme.
This is a scheme that contains this hypergeometric motive in its cohomology.
EXAMPLES::
sage: from sage.modular.hypergeometric_motive import HypergeometricData as Hyp
sage: H = Hyp(cyclotomic=([3],[4]))
sage: H.gamma_list()
[-1, 2, 3, -4]
sage: H.canonical_scheme()
Spectrum of Quotient of Multivariate Polynomial Ring
in X0, X1, Y0, Y1 over Fraction Field of Univariate Polynomial Ring
in t over Rational Field by the ideal
(X0 + X1 - 1, Y0 + Y1 - 1, (-t)*X0^2*X1^3 + 27/64*Y0*Y1^4)
sage: H = Hyp(gamma_list=[-2, 3, 4, -5])
sage: H.canonical_scheme()
Spectrum of Quotient of Multivariate Polynomial Ring
in X0, X1, Y0, Y1 over Fraction Field of Univariate Polynomial Ring
in t over Rational Field by the ideal
(X0 + X1 - 1, Y0 + Y1 - 1, (-t)*X0^3*X1^4 + 1728/3125*Y0^2*Y1^5)
REFERENCES:
[Kat1991]_, section 5.4
"""
if t is None:
t = FractionField(QQ['t']).gen()
basering = t.parent()
gamma_pos = [u for u in self.gamma_list() if u > 0]
gamma_neg = [u for u in self.gamma_list() if u < 0]
N_pos = len(gamma_pos)
N_neg = len(gamma_neg)
varX = ['X{}'.format(i) for i in range(N_pos)]
varY = ['Y{}'.format(i) for i in range(N_neg)]
ring = PolynomialRing(basering, varX + varY)
gens = ring.gens()
X = gens[:N_pos]
Y = gens[N_pos:]
eq0 = ring.sum(X) - 1
eq1 = ring.sum(Y) - 1
eq2_pos = ring.prod(X[i] ** gamma_pos[i] for i in range(N_pos))
eq2_neg = ring.prod(Y[j] ** -gamma_neg[j] for j in range(N_neg))
ideal = ring.ideal([eq0, eq1, self.M_value() * eq2_neg - t * eq2_pos])
return Spec(ring.quotient(ideal))
示例2: parabolic_kazhdan_lusztig_polynomial
# 需要导入模块: from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing [as 别名]
# 或者: from sage.rings.polynomial.polynomial_ring_constructor.PolynomialRing import sum [as 别名]
def parabolic_kazhdan_lusztig_polynomial(self, u, v, J, constant_term_one=True):
"""
Return the parabolic Kazhdan-Lusztig polynomial `P_{u,v}^{-,J}`.
INPUT:
- ``u``, ``v`` -- minimal length coset representatives of `W/W_J` for this Coxeter group `W`
- ``J`` -- a subset of the index set of ``self`` specifying the parabolic subgroup
This method implements the parabolic Kazhdan-Lusztig polynomials
`P^{-,J}_{u,v}` of [Deo1987b]_, which are defined as
`P^{-,J}_{u,v} = \sum_{z\in W_J} (-1)^{\ell(z)} P_{yz,w}(q)`
with the conventions in Sage.
As for :meth:`kazhdan_lusztig_polynomial` the convention
differs from Theorem 2.7 in [LT1998]_ by:
.. MATH::
{}^{LT} P_{y,w}^{-,J}(q) = q^{\ell(w)-\ell(y)} P_{y,w}^{-,J}(q^{-2})
EXAMPLES::
sage: W = CoxeterGroup(['A',3], implementation='coxeter3') # optional - coxeter3
sage: W.parabolic_kazhdan_lusztig_polynomial([],[3,2],[1,3]) # optional - coxeter3
0
sage: W.parabolic_kazhdan_lusztig_polynomial([2],[2,1,3,2],[1,3]) # optional - coxeter3
q
sage: C = CoxeterGroup(['A',3,1], implementation='coxeter3') # optional - coxeter3
sage: C.parabolic_kazhdan_lusztig_polynomial([],[1],[0]) # optional - coxeter3
1
sage: C.parabolic_kazhdan_lusztig_polynomial([],[1,2,1],[0]) # optional - coxeter3
1
sage: C.parabolic_kazhdan_lusztig_polynomial([],[0,1,0,1,2,1],[0]) # optional - coxeter3
q
sage: w=[1, 2, 1, 3, 0, 2, 1, 0, 3, 0, 2]
sage: v=[1, 2, 1, 3, 0, 1, 2, 1, 0, 3, 0, 2, 1, 0, 3, 0, 2]
sage: C.parabolic_kazhdan_lusztig_polynomial(w,v,[1,3]) # optional - coxeter3
q^2 + q
sage: C.parabolic_kazhdan_lusztig_polynomial(w,v,[1,3],constant_term_one=False) # optional - coxeter3
q^4 + q^2
TESTS::
sage: W = CoxeterGroup(['A', 3], implementation='coxeter3') # optional - coxeter3
sage: type(W.parabolic_kazhdan_lusztig_polynomial([2],[],[1])) # optional - coxeter3
<type 'sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint'>
"""
u = self(u)
v = self(v)
if any(d in J for d in u.descents()) or any(d in J for d in v.descents()):
raise ValueError("u and v have to be minimal coset representatives")
J_set = set(J)
WOI = self.weak_order_ideal(lambda x: J_set.issuperset(x.descents()))
if constant_term_one:
P = PolynomialRing(ZZ, 'q')
return P.sum((-1)**(z.length()) * self.kazhdan_lusztig_polynomial(u*z,v)
for z in WOI if (u*z).bruhat_le(v))
P = PolynomialRing(ZZ, 'q', sparse=True)
return P.sum((-1)**(z.length()) * self.kazhdan_lusztig_polynomial(u*z,v, constant_term_one=False).shift(z.length())
for z in WOI if (u*z).bruhat_le(v))