本文整理汇总了Python中sage.numerical.mip.MixedIntegerLinearProgram.set_binary方法的典型用法代码示例。如果您正苦于以下问题:Python MixedIntegerLinearProgram.set_binary方法的具体用法?Python MixedIntegerLinearProgram.set_binary怎么用?Python MixedIntegerLinearProgram.set_binary使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sage.numerical.mip.MixedIntegerLinearProgram
的用法示例。
在下文中一共展示了MixedIntegerLinearProgram.set_binary方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: gale_ryser_theorem
# 需要导入模块: from sage.numerical.mip import MixedIntegerLinearProgram [as 别名]
# 或者: from sage.numerical.mip.MixedIntegerLinearProgram import set_binary [as 别名]
#.........这里部分代码省略.........
``gale_ryser_theorem`` is then called on these sequences, and the output
checked for correction.::
sage: def test_algorithm(algorithm, low = 10, high = 50):
... n,m = randint(low,high), randint(low,high)
... g = graphs.RandomBipartite(n, m, .3)
... s1 = sorted(g.degree([(0,i) for i in range(n)]), reverse = True)
... s2 = sorted(g.degree([(1,i) for i in range(m)]), reverse = True)
... m = gale_ryser_theorem(s1, s2, algorithm = algorithm)
... ss1 = sorted(map(lambda x : sum(x) , m.rows()), reverse = True)
... ss2 = sorted(map(lambda x : sum(x) , m.columns()), reverse = True)
... if ((ss1 == s1) and (ss2 == s2)):
... return True
... return False
sage: for algorithm in ["gale", "ryser"]: # long time
... for i in range(50): # long time
... if not test_algorithm(algorithm, 3, 10): # long time
... print "Something wrong with algorithm ", algorithm # long time
... break # long time
Null matrix::
sage: gale_ryser_theorem([0,0,0],[0,0,0,0], algorithm="gale")
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
sage: gale_ryser_theorem([0,0,0],[0,0,0,0], algorithm="ryser")
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
REFERENCES:
.. [Ryser63] H. J. Ryser, Combinatorial Mathematics,
Carus Monographs, MAA, 1963.
.. [Gale57] D. Gale, A theorem on flows in networks, Pacific J. Math.
7(1957)1073-1082.
"""
from sage.combinat.partition import Partition
from sage.matrix.constructor import matrix
if not(is_gale_ryser(p1,p2)):
return False
if algorithm=="ryser": # ryser's algorithm
from sage.combinat.permutation import Permutation
# Sorts the sequences if they are not, and remembers the permutation
# applied
tmp = sorted(enumerate(p1), reverse=True, key=lambda x:x[1])
r = [x[1] for x in tmp if x[1]>0]
r_permutation = [x-1 for x in Permutation([x[0]+1 for x in tmp]).inverse()]
m = len(r)
tmp = sorted(enumerate(p2), reverse=True, key=lambda x:x[1])
s = [x[1] for x in tmp if x[1]>0]
s_permutation = [x-1 for x in Permutation([x[0]+1 for x in tmp]).inverse()]
n = len(s)
A0 = matrix([[1]*r[j]+[0]*(n-r[j]) for j in range(m)])
for k in range(1,n+1):
goodcols = [i for i in range(n) if s[i]==sum(A0.column(i))]
if sum(A0.column(n-k))<>s[n-k]:
A0 = _slider01(A0,s[n-k],n-k, p1, p2, goodcols)
# If we need to add empty rows/columns
if len(p1)!=m:
A0 = A0.stack(matrix([[0]*n]*(len(p1)-m)))
if len(p2)!=n:
A0 = A0.transpose().stack(matrix([[0]*len(p1)]*(len(p2)-n))).transpose()
# Applying the permutations to get a matrix satisfying the
# order given by the input
A0 = A0.matrix_from_rows_and_columns(r_permutation, s_permutation)
return A0
elif algorithm == "gale":
from sage.numerical.mip import MixedIntegerLinearProgram
k1, k2=len(p1), len(p2)
p = MixedIntegerLinearProgram()
b = p.new_variable(dim=2)
for (i,c) in enumerate(p1):
p.add_constraint(p.sum([b[i][j] for j in xrange(k2)]),min=c,max=c)
for (i,c) in enumerate(p2):
p.add_constraint(p.sum([b[j][i] for j in xrange(k1)]),min=c,max=c)
p.set_objective(None)
p.set_binary(b)
p.solve()
b = p.get_values(b)
M = [[0]*k2 for i in xrange(k1)]
for i in xrange(k1):
for j in xrange(k2):
M[i][j] = int(b[i][j])
return matrix(M)
else:
raise ValueError("The only two algorithms available are \"gale\" and \"ryser\"")
示例2: binpacking
# 需要导入模块: from sage.numerical.mip import MixedIntegerLinearProgram [as 别名]
# 或者: from sage.numerical.mip.MixedIntegerLinearProgram import set_binary [as 别名]
#.........这里部分代码省略.........
- ``items`` -- A list of real values (the items' weight)
- ``maximum`` -- The maximal size of a bin
- ``k`` -- Number of bins
- When set to an integer value, the function returns a partition
of the items into `k` bins if possible, and raises an
exception otherwise.
- When set to ``None``, the function returns a partition of the items
using the least number possible of bins.
OUTPUT:
A list of lists, each member corresponding to a box and containing
the list of the weights inside it. If there is no solution, an
exception is raised (this can only happen when ``k`` is specified
or if ``maximum`` is less that the size of one item).
EXAMPLES:
Trying to find the minimum amount of boxes for 5 items of weights
`1/5, 1/4, 2/3, 3/4, 5/7`::
sage: from sage.numerical.optimize import binpacking
sage: values = [1/5, 1/3, 2/3, 3/4, 5/7]
sage: bins = binpacking(values)
sage: len(bins)
3
Checking the bins are of correct size ::
sage: all([ sum(b)<= 1 for b in bins ])
True
Checking every item is in a bin ::
sage: b1, b2, b3 = bins
sage: all([ (v in b1 or v in b2 or v in b3) for v in values ])
True
One way to use only three boxes (which is best possible) is to put
`1/5 + 3/4` together in a box, `1/3+2/3` in another, and `5/7`
by itself in the third one.
Of course, we can also check that there is no solution using only two boxes ::
sage: from sage.numerical.optimize import binpacking
sage: binpacking([0.2,0.3,0.8,0.9], k=2)
Traceback (most recent call last):
...
ValueError: This problem has no solution !
"""
if max(items) > maximum:
raise ValueError("This problem has no solution !")
if k==None:
from sage.functions.other import ceil
k=ceil(sum(items)/maximum)
while True:
from sage.numerical.mip import MIPSolverException
try:
return binpacking(items,k=k,maximum=maximum)
except MIPSolverException:
k = k + 1
from sage.numerical.mip import MixedIntegerLinearProgram, MIPSolverException
p=MixedIntegerLinearProgram()
# Boolean variable indicating whether
# the i th element belongs to box b
box=p.new_variable(dim=2)
# Each bin contains at most max
for b in range(k):
p.add_constraint(p.sum([items[i]*box[i][b] for i in range(len(items))]),max=maximum)
# Each item is assigned exactly one bin
for i in range(len(items)):
p.add_constraint(p.sum([box[i][b] for b in range(k)]),min=1,max=1)
p.set_objective(None)
p.set_binary(box)
try:
p.solve()
except MIPSolverException:
raise ValueError("This problem has no solution !")
box=p.get_values(box)
boxes=[[] for i in range(k)]
for b in range(k):
boxes[b].extend([items[i] for i in range(len(items)) if round(box[i][b])==1])
return boxes
示例3: knapsack
# 需要导入模块: from sage.numerical.mip import MixedIntegerLinearProgram [as 别名]
# 或者: from sage.numerical.mip.MixedIntegerLinearProgram import set_binary [as 别名]
def knapsack(seq, binary=True, max=1, value_only=False, solver=None, verbose=0):
r"""
Solves the knapsack problem
For more information on the knapsack problem, see the documentation of the
:mod:`knapsack module <sage.numerical.knapsack>` or the
:wikipedia:`Knapsack_problem`.
INPUT:
- ``seq`` -- Two different possible types:
- A sequence of tuples ``(weight, value, something1, something2,
...)``. Note that only the first two coordinates (``weight`` and
``values``) will be taken into account. The rest (if any) will be
ignored. This can be useful if you need to attach some information to
the items.
- A sequence of reals (a value of 1 is assumed).
- ``binary`` -- When set to ``True``, an item can be taken 0 or 1 time.
When set to ``False``, an item can be taken any amount of times (while
staying integer and positive).
- ``max`` -- Maximum admissible weight.
- ``value_only`` -- When set to ``True``, only the maximum useful value is
returned. When set to ``False``, both the maximum useful value and an
assignment are returned.
- ``solver`` -- (default: ``None``) Specify a Linear Program (LP) solver to
be used. If set to ``None``, the default one is used. For more information
on LP solvers and which default solver is used, see the documentation of
class :class:`MixedIntegerLinearProgram
<sage.numerical.mip.MixedIntegerLinearProgram>`.
- ``verbose`` -- integer (default: ``0``). Sets the level of verbosity. Set
to 0 by default, which means quiet.
OUTPUT:
If ``value_only`` is set to ``True``, only the maximum useful value is
returned. Else (the default), the function returns a pair ``[value,list]``,
where ``list`` can be of two types according to the type of ``seq``:
- The list of tuples `(w_i, u_i, ...)` occurring in the solution.
- A list of reals where each real is repeated the number of times it is
taken into the solution.
EXAMPLES:
If your knapsack problem is composed of three items ``(weight, value)``
defined by ``(1,2), (1.5,1), (0.5,3)``, and a bag of maximum weight `2`, you
can easily solve it this way::
sage: from sage.numerical.knapsack import knapsack
sage: knapsack( [(1,2), (1.5,1), (0.5,3)], max=2)
[5.0, [(1, 2), (0.500000000000000, 3)]]
sage: knapsack( [(1,2), (1.5,1), (0.5,3)], max=2, value_only=True)
5.0
Besides weight and value, you may attach any data to the items::
sage: from sage.numerical.knapsack import knapsack
sage: knapsack( [(1, 2, 'spam'), (0.5, 3, 'a', 'lot')])
[3.0, [(0.500000000000000, 3, 'a', 'lot')]]
In the case where all the values (usefulness) of the items are equal to one,
you do not need embarrass yourself with the second values, and you can just
type for items `(1,1), (1.5,1), (0.5,1)` the command::
sage: from sage.numerical.knapsack import knapsack
sage: knapsack([1,1.5,0.5], max=2, value_only=True)
2.0
"""
reals = not isinstance(seq[0], tuple)
if reals:
seq = [(x,1) for x in seq]
from sage.numerical.mip import MixedIntegerLinearProgram
p = MixedIntegerLinearProgram(maximization=True, solver=solver)
present = p.new_variable()
p.set_objective(p.sum([present[i] * seq[i][1] for i in range(len(seq))]))
p.add_constraint(p.sum([present[i] * seq[i][0] for i in range(len(seq))]), max=max)
if binary:
p.set_binary(present)
else:
p.set_integer(present)
if value_only:
return p.solve(objective_only=True, log=verbose)
else:
objective = p.solve(log=verbose)
present = p.get_values(present)
val = []
#.........这里部分代码省略.........
示例4: knapsack
# 需要导入模块: from sage.numerical.mip import MixedIntegerLinearProgram [as 别名]
# 或者: from sage.numerical.mip.MixedIntegerLinearProgram import set_binary [as 别名]
def knapsack(seq, binary=True, max=1, value_only=False):
r"""
Solves the knapsack problem
Knapsack problems:
You have already had a knapsack problem, so you should know,
but in case you do not, a knapsack problem is what happens
when you have hundred of items to put into a bag which is
too small for all of them.
When you formally write it, here is your problem:
* Your bag can contain a weight of at most `W`.
* Each item `i` you have has a weight `w_i`.
* Each item `i` has a usefulness of `u_i`.
You then want to maximize the usefulness of the items you
will store into your bag, while keeping sure the weight of
the bag will not go over `W`.
As a linear program, this problem can be represented this way
(if you define `b_i` as the binary variable indicating whether
the item `i` is to be included in your bag):
.. MATH::
\mbox{Maximize: }\sum_i b_i u_i \\
\mbox{Such that: }
\sum_i b_i w_i \leq W \\
\forall i, b_i \mbox{ binary variable} \\
(For more information,
cf. http://en.wikipedia.org/wiki/Knapsack_problem.)
EXAMPLE:
If your knapsack problem is composed of three
items (weight, value) defined by (1,2), (1.5,1), (0.5,3),
and a bag of maximum weight 2, you can easily solve it this way::
sage: from sage.numerical.knapsack import knapsack
sage: knapsack( [(1,2), (1.5,1), (0.5,3)], max=2)
[5.0, [(1, 2), (0.500000000000000, 3)]]
sage: knapsack( [(1,2), (1.5,1), (0.5,3)], max=2, value_only=True)
5.0
In the case where all the values (usefulness) of the items
are equal to one, you do not need embarrass yourself with
the second values, and you can just type for items
`(1,1), (1.5,1), (0.5,1)` the command::
sage: from sage.numerical.knapsack import knapsack
sage: knapsack([1,1.5,0.5], max=2, value_only=True)
2.0
INPUT:
- ``seq`` -- Two different possible types:
- A sequence of pairs (weight, value).
- A sequence of reals (a value of 1 is assumed).
- ``binary`` -- When set to True, an item can be taken 0 or 1 time.
When set to False, an item can be taken any amount of
times (while staying integer and positive).
- ``max`` -- Maximum admissible weight.
- ``value_only`` -- When set to True, only the maximum useful
value is returned. When set to False, both the maximum useful
value and an assignment are returned.
OUTPUT:
If ``value_only`` is set to True, only the maximum useful value
is returned. Else (the default), the function returns a pair
``[value,list]``, where ``list`` can be of two types according
to the type of ``seq``:
- A list of pairs `(w_i, u_i)` for each object `i` occurring
in the solution.
- A list of reals where each real is repeated the number
of times it is taken into the solution.
"""
reals = not isinstance(seq[0], tuple)
if reals:
seq = [(x, 1) for x in seq]
from sage.numerical.mip import MixedIntegerLinearProgram
p = MixedIntegerLinearProgram(maximization=True)
present = p.new_variable()
p.set_objective(p.sum([present[i] * seq[i][1] for i in range(len(seq))]))
p.add_constraint(p.sum([present[i] * seq[i][0] for i in range(len(seq))]), max=max)
if binary:
p.set_binary(present)
else:
#.........这里部分代码省略.........
示例5: steiner_tree
# 需要导入模块: from sage.numerical.mip import MixedIntegerLinearProgram [as 别名]
# 或者: from sage.numerical.mip.MixedIntegerLinearProgram import set_binary [as 别名]
#.........这里部分代码省略.........
+ answering very quickly in some cases
+
+ EXAMPLES:
+
+ The Steiner Tree of the first 5 vertices in a random graph is,
+ of course, always a tree ::
+
+ sage: g = graphs.RandomGNP(30,.5)
+ sage: st = g.steiner_tree(g.vertices()[:5]) # optional - requires GLPK, CBC or CPLEX
+ sage: st.is_tree() # optional - requires GLPK, CBC or CPLEX
+ True
+
+ And all the 5 vertices are contained in this tree ::
+
+ sage: all([v in st for v in g.vertices()[:5] ]) # optional - requires GLPK, CBC or CPLEX
+ True
+
+ An exception is raised when the problem is impossible, i.e.
+ if the given vertices are not all included in the same
+ connected component ::
+
+ sage: g = 2 * graphs.PetersenGraph()
+ sage: st = g.steiner_tree([5,15])
+ Traceback (most recent call last):
+ ...
+ ValueError: The given vertices do not all belong to the same connected component. This problem has no solution !
+
"""
if G.is_directed():
g = nx.Graph(G)
else:
g = G
vertices=G.nodes()
if g.has_multiple_edges():
raise ValueError("The graph is expected not to have multiple edges.")
# Can the problem be solved ? Are all the vertices in the same
# connected component ?
cc = g.connected_component_containing_vertex(vertices[0])
if not all([v in cc for v in vertices]):
raise ValueError("The given vertices do not all belong to the same connected component. This problem has no solution !")
# Can it be solved using the min spanning tree algorithm ?
if not weighted:
gg = g.subgraph(vertices)
if gg.is_connected():
st = g.subgraph(edges = gg.min_spanning_tree())
st.delete_vertices([v for v in g if st.degree(v) == 0])
return st
# Then, LP formulation
p = MixedIntegerLinearProgram(maximization = False)
# Reorder an edge
R = lambda (x,y) : (x,y) if x<y else (y,x)
# edges used in the Steiner Tree
edges = p.new_variable()
# relaxed edges to test for acyclicity
r_edges = p.new_variable()
# Whether a vertex is in the Steiner Tree
vertex = p.new_variable()
for v in g:
for e in g.edges_incident(v, labels=False):
p.add_constraint(vertex[v] - edges[R(e)], min = 0)
# We must have the given vertices in our tree
for v in vertices:
p.add_constraint(sum([edges[R(e)] for e in g.edges_incident(v,labels=False)]), min=1)
# The number of edges is equal to the number of vertices in our tree minus 1
p.add_constraint(sum([vertex[v] for v in g]) - sum([edges[R(e)] for e in g.edges(labels=None)]), max = 1, min = 1)
# There are no cycles in our graph
for u,v in g.edges(labels = False):
p.add_constraint( r_edges[(u,v)]+ r_edges[(v,u)] - edges[R((u,v))] , min = 0 )
eps = 1/(5*Integer(g.order()))
for v in g:
p.add_constraint(sum([r_edges[(u,v)] for u in g.neighbors(v)]), max = 1-eps)
# Objective
if weighted:
w = lambda (x,y) : g.edge_label(x,y) if g.edge_label(x,y) is not None else 1
else:
w = lambda (x,y) : 1
p.set_objective(sum([w(e)*edges[R(e)] for e in g.edges(labels = False)]))
p.set_binary(edges)
p.solve()
edges = p.get_values(edges)
st = g.subgraph(edges=[e for e in g.edges(labels = False) if edges[R(e)] == 1])
st.delete_vertices([v for v in g if st.degree(v) == 0])
return st