当前位置: 首页>>代码示例>>Python>>正文


Python DiGraph.order方法代码示例

本文整理汇总了Python中sage.graphs.all.DiGraph.order方法的典型用法代码示例。如果您正苦于以下问题:Python DiGraph.order方法的具体用法?Python DiGraph.order怎么用?Python DiGraph.order使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在sage.graphs.all.DiGraph的用法示例。


在下文中一共展示了DiGraph.order方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _is_valid_digraph_edge_set

# 需要导入模块: from sage.graphs.all import DiGraph [as 别名]
# 或者: from sage.graphs.all.DiGraph import order [as 别名]
def _is_valid_digraph_edge_set( edges, frozen=0 ):
    """
    Returns True if the input data is the edge set of a digraph for a quiver (no loops, no 2-cycles, edge-labels of the specified format), and returns False otherwise.

    INPUT:

    - ``frozen`` -- (integer; default:0) The number of frozen vertices.

    EXAMPLES::

        sage: from sage.combinat.cluster_algebra_quiver.mutation_class import _is_valid_digraph_edge_set
        sage: _is_valid_digraph_edge_set( [[0,1,'a'],[2,3,(1,-1)]] )
        The given digraph has edge labels which are not integral or integral 2-tuples.
        False
        sage: _is_valid_digraph_edge_set( [[0,1],[2,3,(1,-1)]] )
        True
        sage: _is_valid_digraph_edge_set( [[0,1,'a'],[2,3,(1,-1)],[3,2,(1,-1)]] )
        The given digraph or edge list contains oriented 2-cycles.
        False
    """
    try:
        dg = DiGraph()
        dg.allow_multiple_edges(True)
        dg.add_edges( edges )

        # checks if the digraph contains loops
        if dg.has_loops():
            print "The given digraph or edge list contains loops."
            return False

        # checks if the digraph contains oriented 2-cycles
        if _has_two_cycles( dg ):
            print "The given digraph or edge list contains oriented 2-cycles."
            return False

        # checks if all edge labels are 'None', positive integers or tuples of positive integers
        if not all( i == None or ( i in ZZ and i > 0 ) or ( type(i) == tuple and len(i) == 2 and i[0] in ZZ and i[1] in ZZ ) for i in dg.edge_labels() ):
            print "The given digraph has edge labels which are not integral or integral 2-tuples."
            return False

        # checks if all edge labels for multiple edges are 'None' or positive integers
        if dg.has_multiple_edges():
            for e in set( dg.multiple_edges(labels=False) ):
                if not all( i == None or ( i in ZZ and i > 0 ) for i in dg.edge_label( e[0], e[1] ) ):
                    print "The given digraph or edge list contains multiple edges with non-integral labels."
                    return False

        n = dg.order() - frozen
        if n < 0:
            print "The number of frozen variables is larger than the number of vertices."
            return False

        if [ e for e in dg.edges(labels=False) if e[0] >= n] <> []:
            print "The given digraph or edge list contains edges within the frozen vertices."
            return False

        return True
    except StandardError:
        print "Could not even build a digraph from the input data."
        return False
开发者ID:sageb0t,项目名称:testsage,代码行数:62,代码来源:mutation_class.py

示例2: _digraph_mutate

# 需要导入模块: from sage.graphs.all import DiGraph [as 别名]
# 或者: from sage.graphs.all.DiGraph import order [as 别名]
def _digraph_mutate( dg, k, n, m ):
    """
    Returns a digraph obtained from dg with n+m vertices by mutating at vertex k.

    INPUT:

    - ``dg`` -- a digraph with integral edge labels with ``n+m`` vertices
    - ``k`` -- the vertex at which ``dg`` is mutated

    EXAMPLES::

        sage: from sage.combinat.cluster_algebra_quiver.mutation_class import _digraph_mutate
        sage: dg = ClusterQuiver(['A',4]).digraph()
        sage: dg.edges()
        [(0, 1, (1, -1)), (2, 1, (1, -1)), (2, 3, (1, -1))]
        sage: _digraph_mutate(dg,2,4,0).edges()
        [(0, 1, (1, -1)), (1, 2, (1, -1)), (3, 2, (1, -1))]
    """
    edges = dict( ((v1,v2),label) for v1,v2,label in dg._backend.iterator_in_edges(dg,True) )
    in_edges = [ (v1,v2,edges[(v1,v2)]) for (v1,v2) in edges if v2 == k ]
    out_edges = [ (v1,v2,edges[(v1,v2)]) for (v1,v2) in edges if v1 == k ]
    in_edges_new = [ (v2,v1,(-label[1],-label[0])) for (v1,v2,label) in in_edges ]
    out_edges_new = [ (v2,v1,(-label[1],-label[0])) for (v1,v2,label) in out_edges ]
    diag_edges_new = []
    diag_edges_del = []

    for (v1,v2,label1) in in_edges:
        for (w1,w2,label2) in out_edges:
            l11,l12 = label1
            l21,l22 = label2
            if (v1,w2) in edges:
                diag_edges_del.append( (v1,w2,edges[(v1,w2)]) )
                a,b = edges[(v1,w2)]
                a,b = a+l11*l21, b-l12*l22
                diag_edges_new.append( (v1,w2,(a,b)) )
            elif (w2,v1) in edges:
                diag_edges_del.append( (w2,v1,edges[(w2,v1)]) )
                a,b = edges[(w2,v1)]
                a,b = b+l11*l21, a-l12*l22
                if a<0:
                    diag_edges_new.append( (w2,v1,(b,a)) )
                elif a>0:
                    diag_edges_new.append( (v1,w2,(a,b)) )
            else:
                a,b = l11*l21,-l12*l22
                diag_edges_new.append( (v1,w2,(a,b)) )

    del_edges = in_edges + out_edges + diag_edges_del
    new_edges = in_edges_new + out_edges_new + diag_edges_new
    new_edges += [ (v1,v2,edges[(v1,v2)]) for (v1,v2) in edges if not (v1,v2,edges[(v1,v2)]) in del_edges ]

    dg_new = DiGraph()
    for v1,v2,label in new_edges:
        dg_new._backend.add_edge(v1,v2,label,True)
    if dg_new.order() < n+m:
        dg_new_vertices = [ v for v in dg_new ]
        for i in [ v for v in dg if v not in dg_new_vertices ]:
            dg_new.add_vertex(i)

    return dg_new
开发者ID:sageb0t,项目名称:testsage,代码行数:62,代码来源:mutation_class.py

示例3: _matrix_to_digraph

# 需要导入模块: from sage.graphs.all import DiGraph [as 别名]
# 或者: from sage.graphs.all.DiGraph import order [as 别名]
def _matrix_to_digraph( M ):
    """
    Returns the digraph obtained from the matrix ``M``.
    In order to generate a quiver, we assume that ``M`` is skew-symmetrizable.

    EXAMPLES::

        sage: from sage.combinat.cluster_algebra_quiver.mutation_class import _matrix_to_digraph
        sage: _matrix_to_digraph(matrix(3,[0,1,0,-1,0,-1,0,1,0]))
        Digraph on 3 vertices
    """
    n = M.ncols()

    dg = DiGraph(sparse=True)
    for i,j in M.nonzero_positions():
        if i >= n: a,b = M[i,j],-M[i,j]
        else: a,b = M[i,j],M[j,i]
        if a > 0:
            dg._backend.add_edge(i,j,(a,b),True)
        elif i >= n:
            dg._backend.add_edge(j,i,(-a,-b),True)
    if dg.order() < M.nrows():
        for i in [ index for index in xrange(M.nrows()) if index not in dg ]:
            dg.add_vertex(i)
    return dg
开发者ID:sageb0t,项目名称:testsage,代码行数:27,代码来源:mutation_class.py


注:本文中的sage.graphs.all.DiGraph.order方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。