本文整理汇总了Python中sage.graphs.all.DiGraph.add_edge方法的典型用法代码示例。如果您正苦于以下问题:Python DiGraph.add_edge方法的具体用法?Python DiGraph.add_edge怎么用?Python DiGraph.add_edge使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sage.graphs.all.DiGraph
的用法示例。
在下文中一共展示了DiGraph.add_edge方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: uncompactify
# 需要导入模块: from sage.graphs.all import DiGraph [as 别名]
# 或者: from sage.graphs.all.DiGraph import add_edge [as 别名]
def uncompactify(self):
r"""
Returns the tree obtained from self by splitting edges so that they
are labelled by exactly one letter. The resulting tree is
isomorphic to the suffix trie.
EXAMPLES::
sage: from sage.combinat.words.suffix_trees import ImplicitSuffixTree, SuffixTrie
sage: abbab = Words("ab")("abbab")
sage: s = SuffixTrie(abbab)
sage: t = ImplicitSuffixTree(abbab)
sage: t.uncompactify().is_isomorphic(s.to_digraph())
True
"""
tree = self.to_digraph(word_labels=True)
newtree = DiGraph()
newtree.add_vertices(range(tree.order()))
new_node = tree.order() + 1
for (u,v,label) in tree.edge_iterator():
if len(label) == 1:
newtree.add_edge(u,v)
else:
newtree.add_edge(u,new_node,label[0]);
for w in label[1:-1]:
newtree.add_edge(new_node,new_node+1,w)
new_node += 1
newtree.add_edge(new_node,v,label[-1])
new_node += 1
return newtree
示例2: add_edge
# 需要导入模块: from sage.graphs.all import DiGraph [as 别名]
# 或者: from sage.graphs.all.DiGraph import add_edge [as 别名]
def add_edge(self, i, j, label=1):
"""
EXAMPLES::
sage: from sage.combinat.root_system.dynkin_diagram import DynkinDiagram_class
sage: d = DynkinDiagram_class(CartanType(['A',3]))
sage: list(sorted(d.edges()))
[]
sage: d.add_edge(2, 3)
sage: list(sorted(d.edges()))
[(2, 3, 1), (3, 2, 1)]
"""
DiGraph.add_edge(self, i, j, label)
if not self.has_edge(j, i):
self.add_edge(j, i, 1)
示例3: to_dag
# 需要导入模块: from sage.graphs.all import DiGraph [as 别名]
# 或者: from sage.graphs.all.DiGraph import add_edge [as 别名]
def to_dag(self):
"""
Returns a directed acyclic graph corresponding to the skew
partition.
EXAMPLES::
sage: dag = SkewPartition([[3, 2, 1], [1, 1]]).to_dag()
sage: dag.edges()
[('0,1', '0,2', None), ('0,1', '1,1', None)]
sage: dag.vertices()
['0,1', '0,2', '1,1', '2,0']
"""
i = 0
#Make the skew tableau from the shape
skew = [[1]*row_length for row_length in self.outer()]
inner = self.inner()
for i in range(len(inner)):
for j in range(inner[i]):
skew[i][j] = None
G = DiGraph()
for row in range(len(skew)):
for column in range(len(skew[row])):
if skew[row][column] is not None:
string = "%d,%d" % (row, column)
G.add_vertex(string)
#Check to see if there is a node to the right
if column != len(skew[row]) - 1:
newstring = "%d,%d" % (row, column+1)
G.add_edge(string, newstring)
#Check to see if there is anything below
if row != len(skew) - 1:
if len(skew[row+1]) > column:
if skew[row+1][column] is not None:
newstring = "%d,%d" % (row+1, column)
G.add_edge(string, newstring)
return G
示例4: _digraph
# 需要导入模块: from sage.graphs.all import DiGraph [as 别名]
# 或者: from sage.graphs.all.DiGraph import add_edge [as 别名]
def _digraph(self):
r"""
Constructs the underlying digraph and stores the result as an
attribute.
EXAMPLES::
sage: from sage.combinat.yang_baxter_graph import SwapIncreasingOperator
sage: ops = [SwapIncreasingOperator(i) for i in range(2)]
sage: Y = YangBaxterGraph(root=(1,2,3), operators=ops)
sage: Y._digraph
Digraph on 6 vertices
"""
digraph = DiGraph()
digraph.add_vertex(self._root)
queue = [self._root]
while queue:
u = queue.pop()
for (v, l) in self._succesors(u):
if v not in digraph:
queue.append(v)
digraph.add_edge(u, v, l)
return digraph
示例5: Hasse_diagram_from_incidences
# 需要导入模块: from sage.graphs.all import DiGraph [as 别名]
# 或者: from sage.graphs.all.DiGraph import add_edge [as 别名]
#.........这里部分代码省略.........
sage: coatom_to_atoms = [(0,1), (0,2), (1,2)]
and we can compute the Hasse diagram as ::
sage: L = sage.geometry.cone.Hasse_diagram_from_incidences(
... atom_to_coatoms, coatom_to_atoms)
sage: L
Finite poset containing 8 elements
sage: for level in L.level_sets(): print level
[((), (0, 1, 2))]
[((0,), (0, 1)), ((1,), (0, 2)), ((2,), (1, 2))]
[((0, 1), (0,)), ((0, 2), (1,)), ((1, 2), (2,))]
[((0, 1, 2), ())]
For more involved examples see the *source code* of
:meth:`sage.geometry.cone.ConvexRationalPolyhedralCone.face_lattice` and
:meth:`sage.geometry.fan.RationalPolyhedralFan._compute_cone_lattice`.
"""
from sage.graphs.all import DiGraph
from sage.combinat.posets.posets import FinitePoset
def default_face_constructor(atoms, coatoms, **kwds):
return (atoms, coatoms)
if face_constructor is None:
face_constructor = default_face_constructor
atom_to_coatoms = [frozenset(atc) for atc in atom_to_coatoms]
A = frozenset(range(len(atom_to_coatoms))) # All atoms
coatom_to_atoms = [frozenset(cta) for cta in coatom_to_atoms]
C = frozenset(range(len(coatom_to_atoms))) # All coatoms
# Comments with numbers correspond to steps in Section 2.5 of the article
L = DiGraph(1) # 3: initialize L
faces = dict()
atoms = frozenset()
coatoms = C
faces[atoms, coatoms] = 0
next_index = 1
Q = [(atoms, coatoms)] # 4: initialize Q with the empty face
while Q: # 5
q_atoms, q_coatoms = Q.pop() # 6: remove some q from Q
q = faces[q_atoms, q_coatoms]
# 7: compute H = {closure(q+atom) : atom not in atoms of q}
H = dict()
candidates = set(A.difference(q_atoms))
for atom in candidates:
coatoms = q_coatoms.intersection(atom_to_coatoms[atom])
atoms = A
for coatom in coatoms:
atoms = atoms.intersection(coatom_to_atoms[coatom])
H[atom] = (atoms, coatoms)
# 8: compute the set G of minimal sets in H
minimals = set([])
while candidates:
candidate = candidates.pop()
atoms = H[candidate][0]
if atoms.isdisjoint(candidates) and atoms.isdisjoint(minimals):
minimals.add(candidate)
# Now G == {H[atom] : atom in minimals}
for atom in minimals: # 9: for g in G:
g_atoms, g_coatoms = H[atom]
if not required_atoms is None:
if g_atoms.isdisjoint(required_atoms):
continue
if (g_atoms, g_coatoms) in faces:
g = faces[g_atoms, g_coatoms]
else: # 11: if g was newly created
g = next_index
faces[g_atoms, g_coatoms] = g
next_index += 1
Q.append((g_atoms, g_coatoms)) # 12
L.add_edge(q, g) # 14
# End of algorithm, now construct a FinitePoset.
# In principle, it is recommended to use Poset or in this case perhaps
# even LatticePoset, but it seems to take several times more time
# than the above computation, makes unnecessary copies, and crashes.
# So for now we will mimic the relevant code from Poset.
# Enumeration of graph vertices must be a linear extension of the poset
new_order = L.topological_sort()
# Make sure that coatoms are in the end in proper order
tail = [faces[atoms, frozenset([coatom])]
for coatom, atoms in enumerate(coatom_to_atoms)]
tail.append(faces[A, frozenset()])
new_order = [n for n in new_order if n not in tail] + tail
# Make sure that atoms are in the beginning in proper order
head = [0] # We know that the empty face has index 0
head.extend(faces[frozenset([atom]), coatoms]
for atom, coatoms in enumerate(atom_to_coatoms)
if required_atoms is None or atom in required_atoms)
new_order = head + [n for n in new_order if n not in head]
# "Invert" this list to a dictionary
labels = dict()
for new, old in enumerate(new_order):
labels[old] = new
L.relabel(labels)
# Construct the actual poset elements
elements = [None] * next_index
for face, index in faces.items():
atoms, coatoms = face
elements[labels[index]] = face_constructor(
tuple(sorted(atoms)), tuple(sorted(coatoms)), **kwds)
return FinitePoset(L, elements, key = key)
示例6: RandomPoset
# 需要导入模块: from sage.graphs.all import DiGraph [as 别名]
# 或者: from sage.graphs.all.DiGraph import add_edge [as 别名]
def RandomPoset(n,p):
r"""
Generate a random poset on ``n`` vertices according to a
probability ``p``.
INPUT:
- ``n`` - number of vertices, a non-negative integer
- ``p`` - a probability, a real number between 0 and 1 (inclusive)
OUTPUT:
A poset on ``n`` vertices. The construction decides to make an
ordered pair of vertices comparable in the poset with probability
``p``, however a pair is not made comparable if it would violate
the defining properties of a poset, such as transitivity.
So in practice, once the probability exceeds a small number the
generated posets may be very similar to a chain. So to create
interesting examples, keep the probability small, perhaps on the
order of `1/n`.
EXAMPLES::
sage: Posets.RandomPoset(17,.15)
Finite poset containing 17 elements
TESTS::
sage: Posets.RandomPoset('junk', 0.5)
Traceback (most recent call last):
...
TypeError: number of elements must be an integer, not junk
sage: Posets.RandomPoset(-6, 0.5)
Traceback (most recent call last):
...
ValueError: number of elements must be non-negative, not -6
sage: Posets.RandomPoset(6, 'garbage')
Traceback (most recent call last):
...
TypeError: probability must be a real number, not garbage
sage: Posets.RandomPoset(6, -0.5)
Traceback (most recent call last):
...
ValueError: probability must be between 0 and 1, not -0.5
"""
try:
n = Integer(n)
except:
raise TypeError("number of elements must be an integer, not {0}".format(n))
if n < 0:
raise ValueError("number of elements must be non-negative, not {0}".format(n))
try:
p = float(p)
except:
raise TypeError("probability must be a real number, not {0}".format(p))
if p < 0 or p> 1:
raise ValueError("probability must be between 0 and 1, not {0}".format(p))
D = DiGraph(loops=False,multiedges=False)
D.add_vertices(range(n))
for i in range(n):
for j in range(n):
if random.random() < p:
D.add_edge(i,j)
if not D.is_directed_acyclic():
D.delete_edge(i,j)
return Poset(D,cover_relations=False)
示例7: _digraph_mutate
# 需要导入模块: from sage.graphs.all import DiGraph [as 别名]
# 或者: from sage.graphs.all.DiGraph import add_edge [as 别名]
def _digraph_mutate(dg, k, frozen=None):
"""
Return a digraph obtained from ``dg`` by mutating at vertex ``k``.
Vertices can be labelled by anything, and frozen vertices must
be explicitly given.
INPUT:
- ``dg`` -- a digraph with integral edge labels with ``n+m`` vertices
- ``k`` -- the vertex at which ``dg`` is mutated
- ``frozen`` -- the list of frozen vertices (default is the empty list)
EXAMPLES::
sage: from sage.combinat.cluster_algebra_quiver.mutation_class import _digraph_mutate
sage: from sage.combinat.cluster_algebra_quiver.quiver import ClusterQuiver
sage: dg = ClusterQuiver(['A',4]).digraph()
sage: dg.edges()
[(0, 1, (1, -1)), (2, 1, (1, -1)), (2, 3, (1, -1))]
sage: _digraph_mutate(dg,2).edges()
[(0, 1, (1, -1)), (1, 2, (1, -1)), (3, 2, (1, -1))]
TESTS::
sage: dg = DiGraph([('a','b',(1,-1)),('c','a',(1,-1))])
sage: _digraph_mutate(dg,'a').edges()
[('a', 'c', (1, -1)), ('b', 'a', (1, -1)), ('c', 'b', (1, -1))]
sage: _digraph_mutate(dg,'a',frozen=['b','c']).edges()
[('a', 'c', (1, -1)), ('b', 'a', (1, -1))]
sage: dg = DiGraph([('a','b',(2,-2)),('c','a',(2,-2)),('b','c',(2,-2))])
sage: _digraph_mutate(dg,'a').edges()
[('a', 'c', (2, -2)), ('b', 'a', (2, -2)), ('c', 'b', (2, -2))]
"""
# assert sorted(list(dg)) == list(range(n + m))
# this is not assumed anymore
if frozen is None:
frozen = []
edge_it = dg.incoming_edge_iterator(dg, True)
edges = {(v1, v2): label for v1, v2, label in edge_it}
edge_it = dg.incoming_edge_iterator([k], True)
in_edges = [(v1, v2, label) for v1, v2, label in edge_it]
edge_it = dg.outgoing_edge_iterator([k], True)
out_edges = [(v1, v2, label) for v1, v2, label in edge_it]
in_edges_new = [(v2, v1, (-label[1], -label[0]))
for (v1, v2, label) in in_edges]
out_edges_new = [(v2, v1, (-label[1], -label[0]))
for (v1, v2, label) in out_edges]
diag_edges_new = []
diag_edges_del = []
for (v1, v2, label1) in in_edges:
l11, l12 = label1
for (w1, w2, label2) in out_edges:
if v1 in frozen and w2 in frozen:
continue
l21, l22 = label2
if (v1, w2) in edges:
diag_edges_del.append((v1, w2))
a, b = edges[(v1, w2)]
a, b = a + l11 * l21, b - l12 * l22
diag_edges_new.append((v1, w2, (a, b)))
elif (w2, v1) in edges:
diag_edges_del.append((w2, v1))
a, b = edges[(w2, v1)]
a, b = b + l11 * l21, a - l12 * l22
if a < 0:
diag_edges_new.append((w2, v1, (b, a)))
elif a > 0:
diag_edges_new.append((v1, w2, (a, b)))
else:
a, b = l11 * l21, -l12 * l22
diag_edges_new.append((v1, w2, (a, b)))
del_edges = [tuple(ed[:2]) for ed in in_edges + out_edges]
del_edges += diag_edges_del
new_edges = in_edges_new + out_edges_new
new_edges += diag_edges_new
new_edges += [(v1, v2, edges[(v1, v2)]) for (v1, v2) in edges
if (v1, v2) not in del_edges]
dg_new = DiGraph()
dg_new.add_vertices(list(dg))
for v1, v2, label in new_edges:
dg_new.add_edge(v1, v2, label)
return dg_new