本文整理汇总了Python中sage.all.ZZ.valuation方法的典型用法代码示例。如果您正苦于以下问题:Python ZZ.valuation方法的具体用法?Python ZZ.valuation怎么用?Python ZZ.valuation使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sage.all.ZZ
的用法示例。
在下文中一共展示了ZZ.valuation方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: factor_out_p
# 需要导入模块: from sage.all import ZZ [as 别名]
# 或者: from sage.all.ZZ import valuation [as 别名]
def factor_out_p(val, p):
val = ZZ(val)
if val == 0 or val == -1:
return str(val)
if val==1:
return '+1'
s = 1
if val<0:
s = -1
val = -val
ord = val.valuation(p)
val = val/p**ord
out = ''
if s == -1:
out += '-'
else:
out += '+'
if ord==1:
out += str(p)
elif ord>1:
out += '%d^{%d}' % (p, ord)
if val>1:
if ord ==1:
out += r'\cdot '
out += str(val)
return out
示例2: twoadic
# 需要导入模块: from sage.all import ZZ [as 别名]
# 或者: from sage.all.ZZ import valuation [as 别名]
def twoadic(line):
r""" Parses one line from a 2adic file. Returns the label and a dict
containing fields with keys '2adic_index', '2adic_log_level',
'2adic_gens' and '2adic_label'.
Input line fields:
conductor iso number ainvs index level gens label
Sample input lines:
110005 a 2 [1,-1,1,-185793,29503856] 12 4 [[3,0,0,1],[3,2,2,3],[3,0,0,3]] X24
27 a 1 [0,0,1,0,-7] inf inf [] CM
"""
data = split(line)
assert len(data)==8
label = data[0] + data[1] + data[2]
model = data[7]
if model == 'CM':
return label, {
'2adic_index': int(0),
'2adic_log_level': None,
'2adic_gens': None,
'2adic_label': None,
}
index = int(data[4])
level = ZZ(data[5])
log_level = int(level.valuation(2))
assert 2**log_level==level
if data[6]=='[]':
gens=[]
else:
gens = data[6][1:-1].replace('],[','];[').split(';')
gens = [[int(c) for c in g[1:-1].split(',')] for g in gens]
return label, {
'2adic_index': index,
'2adic_log_level': log_level,
'2adic_gens': gens,
'2adic_label': model,
}
示例3: GaloisRepresentation
# 需要导入模块: from sage.all import ZZ [as 别名]
# 或者: from sage.all.ZZ import valuation [as 别名]
class GaloisRepresentation( Lfunction):
def __init__(self, thingy):
"""
Class representing a L-function coming from a Galois representation.
Typically, dirichlet characters, artin reps, elliptic curves,...
can give rise to such a class.
It can be used for tensor two such together (mul below) and a
L-function class can be extracted from it.
"""
# this is an important global variable.
# it is the maximum of the imag parts of values s at
# which we will compute L(s,.)
self.max_imaginary_part = "40"
if isinstance(thingy, sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field):
self.init_elliptic_curve(thingy)
elif isinstance(thingy, lmfdb.WebCharacter.WebDirichletCharacter):
self.init_dir_char(thingy)
elif isinstance(thingy, lmfdb.artin_representations.math_classes.ArtinRepresentation):
self.init_artin_rep(thingy)
elif (isinstance(thingy, list) and
len(thingy) == 2 and
isinstance(thingy[0],lmfdb.classical_modular_forms.web_newform.WebNewform) and
isinstance(thingy[1],sage.rings.integer.Integer) ):
self.init_elliptic_modular_form(thingy[0],thingy[1])
elif (isinstance(thingy, list) and
len(thingy) == 2 and
isinstance(thingy[0], GaloisRepresentation) and
isinstance(thingy[1], GaloisRepresentation) ):
self.init_tensor_product(thingy[0], thingy[1])
else:
raise ValueError("GaloisRepresentations are currently not implemented for that type (%s) of objects"%type(thingy))
# set a few common variables
self.level = self.conductor
self.degree = self.dim
self.poles = []
self.residues = []
self.algebraic = True
self.weight = self.motivic_weight + 1
## Various ways to construct such a class
def init_elliptic_curve(self, E):
"""
Returns the Galois rep of an elliptic curve over Q
"""
self.original_object = [E]
self.object_type = "ellipticcurve"
self.dim = 2
self.motivic_weight = 1
self.conductor = E.conductor()
self.bad_semistable_primes = [ fa[0] for fa in self.conductor.factor() if fa[1]==1 ]
self.bad_pot_good = [p for p in self.conductor.prime_factors() if E.j_invariant().valuation(p) > 0 ]
self.sign = E.root_number()
self.mu_fe = []
self.nu_fe = [ZZ(1)/ZZ(2)]
self.gammaV = [0, 1]
self.langlands = True
self.selfdual = True
self.primitive = True
self.set_dokchitser_Lfunction()
self.set_number_of_coefficients()
self.coefficient_type = 2
self.coefficient_period = 0
self.besancon_bound = 50000
self.ld.gp().quit()
def eu(p):
"""
Local Euler factor passed as a function
whose input is a prime and
whose output is a polynomial
such that evaluated at p^-s,
we get the inverse of the local factor
of the L-function
"""
R = PolynomialRing(QQ, "T")
T = R.gens()[0]
N = self.conductor
if N % p != 0 : # good reduction
return 1 - E.ap(p) * T + p * T**2
elif N % (p**2) != 0: # multiplicative reduction
return 1 - E.ap(p) * T
else:
return R(1)
self.local_euler_factor = eu
def init_dir_char(self, chi):
"""
#.........这里部分代码省略.........