本文整理汇总了Python中sage.all.ZZ.factor方法的典型用法代码示例。如果您正苦于以下问题:Python ZZ.factor方法的具体用法?Python ZZ.factor怎么用?Python ZZ.factor使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sage.all.ZZ
的用法示例。
在下文中一共展示了ZZ.factor方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: GaloisRepresentation
# 需要导入模块: from sage.all import ZZ [as 别名]
# 或者: from sage.all.ZZ import factor [as 别名]
class GaloisRepresentation( Lfunction):
def __init__(self, thingy):
"""
Class representing a L-function coming from a Galois representation.
Typically, dirichlet characters, artin reps, elliptic curves,...
can give rise to such a class.
It can be used for tensor two such together (mul below) and a
L-function class can be extracted from it.
"""
# this is an important global variable.
# it is the maximum of the imag parts of values s at
# which we will compute L(s,.)
self.max_imaginary_part = "40"
if isinstance(thingy, sage.schemes.elliptic_curves.ell_rational_field.EllipticCurve_rational_field):
self.init_elliptic_curve(thingy)
elif isinstance(thingy, lmfdb.WebCharacter.WebDirichletCharacter):
self.init_dir_char(thingy)
elif isinstance(thingy, lmfdb.artin_representations.math_classes.ArtinRepresentation):
self.init_artin_rep(thingy)
elif (isinstance(thingy, list) and
len(thingy) == 2 and
isinstance(thingy[0],lmfdb.modular_forms.elliptic_modular_forms.backend.web_newforms.WebNewForm) and
isinstance(thingy[1],sage.rings.integer.Integer) ):
self.init_elliptic_modular_form(thingy[0],thingy[1])
elif (isinstance(thingy, list) and
len(thingy) == 2 and
isinstance(thingy[0], GaloisRepresentation) and
isinstance(thingy[1], GaloisRepresentation) ):
self.init_tensor_product(thingy[0], thingy[1])
else:
raise ValueError("GaloisRepresentations are currently not implemented for that type (%s) of objects"%type(thingy))
# set a few common variables
self.level = self.conductor
self.degree = self.dim
self.poles = []
self.residues = []
self.algebraic = True
self.weight = self.motivic_weight + 1
## Various ways to construct such a class
def init_elliptic_curve(self, E):
"""
Returns the Galois rep of an elliptic curve over Q
"""
self.original_object = [E]
self.object_type = "ellipticcurve"
self.dim = 2
self.motivic_weight = 1
self.conductor = E.conductor()
self.bad_semistable_primes = [ fa[0] for fa in self.conductor.factor() if fa[1]==1 ]
self.bad_pot_good = [p for p in self.conductor.prime_factors() if E.j_invariant().valuation(p) > 0 ]
self.sign = E.root_number()
self.mu_fe = []
self.nu_fe = [ZZ(1)/ZZ(2)]
self.gammaV = [0, 1]
self.langlands = True
self.selfdual = True
self.primitive = True
self.set_dokchitser_Lfunction()
self.set_number_of_coefficients()
self.coefficient_type = 2
self.coefficient_period = 0
self.besancon_bound = 50000
self.ld.gp().quit()
def eu(p):
"""
Local Euler factor passed as a function
whose input is a prime and
whose output is a polynomial
such that evaluated at p^-s,
we get the inverse of the local factor
of the L-function
"""
R = PolynomialRing(QQ, "T")
T = R.gens()[0]
N = self.conductor
if N % p != 0 : # good reduction
return 1 - E.ap(p) * T + p * T**2
elif N % (p**2) != 0: # multiplicative reduction
return 1 - E.ap(p) * T
else:
return R(1)
self.local_euler_factor = eu
def init_dir_char(self, chi):
"""
#.........这里部分代码省略.........
示例2: render_curve_webpage_by_label
# 需要导入模块: from sage.all import ZZ [as 别名]
# 或者: from sage.all.ZZ import factor [as 别名]
def render_curve_webpage_by_label(label):
C = base.getDBConnection()
data = C.ellcurves.curves.find_one({'label': label})
if data is None:
return "No such curve"
info = {}
ainvs = [int(a) for a in data['ainvs']]
E = EllipticCurve(ainvs)
label=data['label']
N = ZZ(data['conductor'])
iso_class = data['iso']
rank = data['rank']
j_invariant=E.j_invariant()
#plot=E.plot()
discriminant=E.discriminant()
xintpoints_projective=[E.lift_x(x) for x in xintegral_point(data['x-coordinates_of_integral_points'])]
xintpoints=proj_to_aff(xintpoints_projective)
G = E.torsion_subgroup().gens()
if 'gens' in data:
generator=parse_gens(data['gens'])
if len(G) == 0:
tor_struct = 'Trivial'
tor_group='Trivial'
else:
tor_group=' \\times '.join(['\mathbb{Z}/{%s}\mathbb{Z}'%a.order() for a in G])
if 'torsion_structure' in data:
info['tor_structure']= ' \\times '.join(['\mathbb{Z}/{%s}\mathbb{Z}'% int(a) for a in data['torsion_structure']])
else:
info['tor_structure'] = tor_group
info.update(data)
if rank >=2:
lder_tex = "L%s(E,1)" % ("^{("+str(rank)+")}")
elif rank ==1:
lder_tex = "L%s(E,1)" % ("'"*rank)
else:
assert rank == 0
lder_tex = "L(E,1)"
info.update({
'conductor': N,
'disc_factor': latex(discriminant.factor()),
'j_invar_factor':latex(j_invariant.factor()),
'label': label,
'isogeny':iso_class,
'equation': web_latex(E),
#'f': ajax_more(E.q_eigenform, 10, 20, 50, 100, 250),
'f' : web_latex(E.q_eigenform(10)),
'generators':','.join(web_latex(g) for g in generator) if 'gens' in data else ' ',
'lder' : lder_tex,
'p_adic_primes': [p for p in sage.all.prime_range(5,100) if E.is_ordinary(p) and not p.divides(N)],
'ainvs': format_ainvs(data['ainvs']),
'tamagawa_numbers': r' \cdot '.join(str(sage.all.factor(c)) for c in E.tamagawa_numbers()),
'cond_factor':latex(N.factor()),
'xintegral_points':','.join(web_latex(i_p) for i_p in xintpoints),
'tor_gens':','.join(web_latex(eval(g)) for g in data['torsion_generators']) if 'torsion_generators' in data else list(G)
})
info['downloads_visible'] = True
info['downloads'] = [('worksheet', url_for("not_yet_implemented"))]
info['friends'] = [('Isogeny class', "/EllipticCurve/Q/%s" % iso_class),
('Modular Form', url_for("emf.render_elliptic_modular_form_from_label",label="%s" %(iso_class))),
('L-function', "/L/EllipticCurve/Q/%s" % label)]
info['learnmore'] = [('Elliptic Curves', url_for("not_yet_implemented"))]
#info['plot'] = image_src(plot)
info['plot'] = url_for('plot_ec', label=label)
info['iso_class'] = data['iso']
info['download_qexp_url'] = url_for('download_qexp', limit=100, ainvs=','.join([str(a) for a in ainvs]))
properties2 = [('Label', '%s' % label),
(None, '<img src="%s" width="200" height="150"/>' % url_for('plot_ec', label=label) ),
('Conductor', '\(%s\)' % N),
('Discriminant', '\(%s\)' % discriminant),
('j-invariant', '\(%s\)' % j_invariant),
('Rank', '\(%s\)' % rank),
('Torsion Structure', '\(%s\)' % tor_group)
]
#properties.extend([ "prop %s = %s<br/>" % (_,_*1923) for _ in range(12) ])
credit = 'John Cremona'
t = "Elliptic Curve %s" % info['label']
bread = [('Elliptic Curves ', url_for("rational_elliptic_curves")),('Elliptic curves %s' %info['label'],' ')]
return render_template("elliptic_curve/elliptic_curve.html",
info=info, properties2=properties2, credit=credit,bread=bread, title = t)
示例3: render_curve_webpage_by_label
# 需要导入模块: from sage.all import ZZ [as 别名]
# 或者: from sage.all.ZZ import factor [as 别名]
def render_curve_webpage_by_label(label):
C = lmfdb.base.getDBConnection()
data = C.elliptic_curves.curves.find_one({'lmfdb_label': label})
if data is None:
return elliptic_curve_jump_error(label, {})
info = {}
ainvs = [int(a) for a in data['ainvs']]
E = EllipticCurve(ainvs)
cremona_label = data['label']
lmfdb_label = data['lmfdb_label']
N = ZZ(data['conductor'])
cremona_iso_class = data['iso'] # eg '37a'
lmfdb_iso_class = data['lmfdb_iso'] # eg '37.a'
rank = data['rank']
try:
j_invariant = QQ(str(data['jinv']))
except KeyError:
j_invariant = E.j_invariant()
if j_invariant == 0:
j_inv_factored = latex(0)
else:
j_inv_factored = latex(j_invariant.factor())
jinv = unicode(str(j_invariant))
CMD = 0
CM = "no"
EndE = "\(\Z\)"
if E.has_cm():
CMD = E.cm_discriminant()
CM = "yes (\(%s\))"%CMD
if CMD%4==0:
d4 = ZZ(CMD)//4
# r = d4.squarefree_part()
# f = (d4//r).isqrt()
# f="" if f==1 else str(f)
# EndE = "\(\Z[%s\sqrt{%s}]\)"%(f,r)
EndE = "\(\Z[\sqrt{%s}]\)"%(d4)
else:
EndE = "\(\Z[(1+\sqrt{%s})/2]\)"%CMD
# plot=E.plot()
discriminant = E.discriminant()
xintpoints_projective = [E.lift_x(x) for x in xintegral_point(data['x-coordinates_of_integral_points'])]
xintpoints = proj_to_aff(xintpoints_projective)
if 'degree' in data:
modular_degree = data['degree']
else:
try:
modular_degree = E.modular_degree()
except RuntimeError:
modular_degree = 0 # invalid, will be displayed nicely
G = E.torsion_subgroup().gens()
minq = E.minimal_quadratic_twist()[0]
if E == minq:
minq_label = lmfdb_label
else:
minq_ainvs = [str(c) for c in minq.ainvs()]
minq_label = C.elliptic_curves.curves.find_one({'ainvs': minq_ainvs})['lmfdb_label']
# We do not just do the following, as Sage's installed database
# might not have all the curves in the LMFDB database.
# minq_label = E.minimal_quadratic_twist()[0].label()
if 'gens' in data:
generator = parse_gens(data['gens'])
if len(G) == 0:
tor_struct = '\mathrm{Trivial}'
tor_group = '\mathrm{Trivial}'
else:
tor_group = ' \\times '.join(['\Z/{%s}\Z' % a.order() for a in G])
if 'torsion_structure' in data:
info['tor_structure'] = ' \\times '.join(['\Z/{%s}\Z' % int(a) for a in data['torsion_structure']])
else:
info['tor_structure'] = tor_group
info.update(data)
if rank >= 2:
lder_tex = "L%s(E,1)" % ("^{(" + str(rank) + ")}")
elif rank == 1:
lder_tex = "L%s(E,1)" % ("'" * rank)
else:
assert rank == 0
lder_tex = "L(E,1)"
info['Gamma0optimal'] = (
cremona_label[-1] == '1' if cremona_iso_class != '990h' else cremona_label[-1] == '3')
info['modular_degree'] = modular_degree
p_adic_data_exists = (C.elliptic_curves.padic_db.find(
{'lmfdb_iso': lmfdb_iso_class}).count()) > 0 and info['Gamma0optimal']
# Local data
local_data = []
for p in N.prime_factors():
local_info = E.local_data(p)
local_data.append({'p': p,
'tamagawa_number': local_info.tamagawa_number(),
'kodaira_symbol': web_latex(local_info.kodaira_symbol()).replace('$', ''),
'reduction_type': local_info.bad_reduction_type()
})
mod_form_iso = lmfdb_label_regex.match(lmfdb_iso_class).groups()[1]
#.........这里部分代码省略.........
示例4: render_curve_webpage_by_label
# 需要导入模块: from sage.all import ZZ [as 别名]
# 或者: from sage.all.ZZ import factor [as 别名]
def render_curve_webpage_by_label(label):
C = lmfdb.base.getDBConnection()
data = C.elliptic_curves.curves.find_one({"lmfdb_label": label})
if data is None:
return elliptic_curve_jump_error(label, {})
info = {}
ainvs = [int(a) for a in data["ainvs"]]
E = EllipticCurve(ainvs)
cremona_label = data["label"]
lmfdb_label = data["lmfdb_label"]
N = ZZ(data["conductor"])
cremona_iso_class = data["iso"] # eg '37a'
lmfdb_iso_class = data["lmfdb_iso"] # eg '37.a'
rank = data["rank"]
try:
j_invariant = QQ(str(data["jinv"]))
except KeyError:
j_invariant = E.j_invariant()
if j_invariant == 0:
j_inv_factored = latex(0)
else:
j_inv_factored = latex(j_invariant.factor())
jinv = unicode(str(j_invariant))
CMD = 0
CM = "no"
EndE = "\(\Z\)"
if E.has_cm():
CMD = E.cm_discriminant()
CM = "yes (\(%s\))" % CMD
if CMD % 4 == 0:
d4 = ZZ(CMD) // 4
# r = d4.squarefree_part()
# f = (d4//r).isqrt()
# f="" if f==1 else str(f)
# EndE = "\(\Z[%s\sqrt{%s}]\)"%(f,r)
EndE = "\(\Z[\sqrt{%s}]\)" % (d4)
else:
EndE = "\(\Z[(1+\sqrt{%s})/2]\)" % CMD
# plot=E.plot()
discriminant = E.discriminant()
xintpoints_projective = [E.lift_x(x) for x in xintegral_point(data["x-coordinates_of_integral_points"])]
xintpoints = proj_to_aff(xintpoints_projective)
if "degree" in data:
modular_degree = data["degree"]
else:
try:
modular_degree = E.modular_degree()
except RuntimeError:
modular_degree = 0 # invalid, will be displayed nicely
G = E.torsion_subgroup().gens()
E_pari = E.pari_curve(prec=200)
from sage.libs.pari.all import PariError
try:
minq = E.minimal_quadratic_twist()[0]
except PariError: # this does occur with 164411a1
print "PariError computing minimal quadratic twist of elliptic curve %s" % lmfdb_label
minq = E
if E == minq:
minq_label = lmfdb_label
else:
minq_ainvs = [str(c) for c in minq.ainvs()]
minq_label = C.elliptic_curves.curves.find_one({"ainvs": minq_ainvs})["lmfdb_label"]
# We do not just do the following, as Sage's installed database
# might not have all the curves in the LMFDB database.
# minq_label = E.minimal_quadratic_twist()[0].label()
if "gens" in data:
generator = parse_gens(data["gens"])
if len(G) == 0:
tor_struct = "\mathrm{Trivial}"
tor_group = "\mathrm{Trivial}"
else:
tor_group = " \\times ".join(["\Z/{%s}\Z" % a.order() for a in G])
if "torsion_structure" in data:
info["tor_structure"] = " \\times ".join(["\Z/{%s}\Z" % int(a) for a in data["torsion_structure"]])
else:
info["tor_structure"] = tor_group
info.update(data)
if rank >= 2:
lder_tex = "L%s(E,1)" % ("^{(" + str(rank) + ")}")
elif rank == 1:
lder_tex = "L%s(E,1)" % ("'" * rank)
else:
assert rank == 0
lder_tex = "L(E,1)"
info["Gamma0optimal"] = cremona_label[-1] == "1" if cremona_iso_class != "990h" else cremona_label[-1] == "3"
info["modular_degree"] = modular_degree
p_adic_data_exists = (C.elliptic_curves.padic_db.find({"lmfdb_iso": lmfdb_iso_class}).count()) > 0 and info[
"Gamma0optimal"
]
# Local data
local_data = []
for p in N.prime_factors():
local_info = E.local_data(p, algorithm="generic")
local_data.append(
#.........这里部分代码省略.........