本文整理汇总了Python中rgt.GenomicRegionSet.GenomicRegionSet.sort_score方法的典型用法代码示例。如果您正苦于以下问题:Python GenomicRegionSet.sort_score方法的具体用法?Python GenomicRegionSet.sort_score怎么用?Python GenomicRegionSet.sort_score使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类rgt.GenomicRegionSet.GenomicRegionSet
的用法示例。
在下文中一共展示了GenomicRegionSet.sort_score方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: chip_evaluate
# 需要导入模块: from rgt.GenomicRegionSet import GenomicRegionSet [as 别名]
# 或者: from rgt.GenomicRegionSet.GenomicRegionSet import sort_score [as 别名]
def chip_evaluate(args):
# Evaluate Statistics
fpr = dict()
tpr = dict()
roc_auc_1 = dict()
roc_auc_10 = dict()
roc_auc_50 = dict()
roc_auc_100 = dict()
recall = dict()
precision = dict()
prc_auc_1 = dict()
prc_auc_10 = dict()
prc_auc_50 = dict()
prc_auc_100 = dict()
footprint_file = args.footprint_file.split(",")
footprint_name = args.footprint_name.split(",")
footprint_type = args.footprint_type.split(",")
max_score = 0
if "SEG" in footprint_type:
mpbs_regions = GenomicRegionSet("TFBS")
mpbs_regions.read(args.tfbs_file)
# Verifying the maximum score of the MPBS file
for region in iter(mpbs_regions):
score = int(region.data.split("\t")[0])
if score > max_score:
max_score = score
max_score += 1
max_points = []
for i in range(len(footprint_file)):
footprints_regions = GenomicRegionSet("Footprints Prediction")
footprints_regions.read(footprint_file[i])
footprints_regions.sort()
if footprint_type[i] == "SEG":
# Increasing the score of MPBS entry once if any overlaps found in the predicted footprints.
increased_score_mpbs_regions = GenomicRegionSet("Increased Regions")
intersect_regions = mpbs_regions.intersect(footprints_regions, mode=OverlapType.ORIGINAL)
for region in iter(intersect_regions):
region.data = str(int(region.data.split("\t")[0]) + max_score)
increased_score_mpbs_regions.add(region)
# Keep the score of remained MPBS entry unchanged
without_intersect_regions = mpbs_regions.subtract(footprints_regions, whole_region=True)
for region in iter(without_intersect_regions):
increased_score_mpbs_regions.add(region)
increased_score_mpbs_regions.sort_score()
fpr[i], tpr[i], roc_auc_1[i], roc_auc_10[i], roc_auc_50[i], roc_auc_100[i] = \
roc_curve(increased_score_mpbs_regions)
recall[i], precision[i], prc_auc_1[i], prc_auc_10[i], prc_auc_50[i], prc_auc_100[i] = \
precision_recall_curve(increased_score_mpbs_regions)
max_points.append(len(intersect_regions))
elif footprint_type[i] == "SC":
footprints_regions.sort_score()
fpr[i], tpr[i], roc_auc_1[i], roc_auc_10[i], roc_auc_50[i], roc_auc_100[i] = \
roc_curve(footprints_regions)
recall[i], precision[i], prc_auc_1[i], prc_auc_10[i], prc_auc_50[i], prc_auc_100[i] = \
precision_recall_curve(footprints_regions)
max_points.append(len(footprints_regions))
# Output the statistics results into text
stats_fname = os.path.join(args.output_location, "{}_stats.txt".format(args.output_prefix))
stats_header = ["METHOD", "AUC_100", "AUC_50", "AUC_10", "AUC_1", "AUPR_100", "AUPR_50", "AUPR_10", "AUPR_1"]
with open(stats_fname, "w") as stats_file:
stats_file.write("\t".join(stats_header) + "\n")
for i in range(len(footprint_name)):
stats_file.write(footprint_name[i] + "\t" +
str(roc_auc_100[i]) + "\t" + str(roc_auc_50[i]) + "\t" + str(roc_auc_10[i]) + "\t" +
str(roc_auc_1[i]) + "\t" + str(prc_auc_100[i]) + "\t" + str(prc_auc_50[i]) + "\t" +
str(prc_auc_10[i]) + "\t" + str(prc_auc_1[i]) + "\n")
# Output the curves
if args.print_roc_curve:
label_x = "False Positive Rate"
label_y = "True Positive Rate"
curve_name = "ROC"
plot_curve(footprint_name, args.output_location, fpr, tpr, roc_auc_100, label_x, label_y, args.output_prefix,
curve_name, max_points=max_points)
if args.print_pr_curve:
label_x = "Recall"
label_y = "Precision"
curve_name = "PRC"
plot_curve(footprint_name, args.output_location, recall, precision, prc_auc_100, label_x, label_y,
args.output_prefix, curve_name, max_points=max_points)
output_points(footprint_name, args.output_location, args.output_prefix, fpr, tpr, recall, precision)
示例2: chip_evaluate
# 需要导入模块: from rgt.GenomicRegionSet import GenomicRegionSet [as 别名]
# 或者: from rgt.GenomicRegionSet.GenomicRegionSet import sort_score [as 别名]
def chip_evaluate(self):
"""
This evaluation methodology uses motif-predicted binding sites (MPBSs) together with TF ChIP-seq data
to evaluate the footprint predictions.
return:
"""
# Evaluate Statistics
fpr = dict()
tpr = dict()
roc_auc = dict()
roc_auc_1 = dict()
roc_auc_2 = dict()
recall = dict()
precision = dict()
prc_auc = dict()
if "SEG" in self.footprint_type:
mpbs_regions = GenomicRegionSet("TFBS")
mpbs_regions.read_bed(self.tfbs_file)
mpbs_regions.sort()
# Verifying the maximum score of the MPBS file
max_score = -99999999
for region in iter(mpbs_regions):
score = int(region.data)
if score > max_score:
max_score = score
max_score += 1
for i in range(len(self.footprint_file)):
footprints_regions = GenomicRegionSet("Footprints Prediction")
footprints_regions.read_bed(self.footprint_file[i])
# Sort footprint prediction bed files
footprints_regions.sort()
if self.footprint_type[i] == "SEG":
# Increasing the score of MPBS entry once if any overlaps found in the predicted footprints.
increased_score_mpbs_regions = GenomicRegionSet("Increased Regions")
intersect_regions = mpbs_regions.intersect(footprints_regions, mode=OverlapType.ORIGINAL)
for region in iter(intersect_regions):
region.data = str(int(region.data) + max_score)
increased_score_mpbs_regions.add(region)
# Keep the score of remained MPBS entry unchanged
without_intersect_regions = mpbs_regions.subtract(footprints_regions, whole_region=True)
for region in iter(without_intersect_regions):
increased_score_mpbs_regions.add(region)
increased_score_mpbs_regions.sort_score()
fpr[i], tpr[i], roc_auc[i], roc_auc_1[i], roc_auc_2[i] = self.roc_curve(increased_score_mpbs_regions)
recall[i], precision[i], prc_auc[i] = self.precision_recall_curve(increased_score_mpbs_regions)
elif self.footprint_type[i] == "SC":
footprints_regions.sort_score()
fpr[i], tpr[i], roc_auc[i], roc_auc_1[i], roc_auc_2[i] = self.roc_curve(footprints_regions)
recall[i], precision[i], prc_auc[i] = self.precision_recall_curve(footprints_regions)
# Output the statistics results into text
stats_fname = self.output_location + self.tf_name + "_stats.txt"
stats_header = ["METHOD", "AUC_100", "AUC_10", "AUC_1", "AUPR"]
with open(stats_fname, "w") as stats_file:
stats_file.write("\t".join(stats_header) + "\n")
for i in range(len(self.footprint_name)):
stats_file.write(self.footprint_name[i] + "\t" + str(roc_auc[i]) + "\t" + str(roc_auc_1[i]) + "\t"
+ str(roc_auc_2[i]) + "\t" + str(prc_auc[i]) + "\n")
# Output the curves
if self.print_roc_curve:
label_x = "False Positive Rate"
label_y = "True Positive Rate"
curve_name = "ROC"
self.plot_curve(fpr, tpr, roc_auc, label_x, label_y, self.tf_name, curve_name)
if self.print_pr_curve:
label_x = "Recall"
label_y = "Precision"
curve_name = "PRC"
self.plot_curve(recall, precision, prc_auc, label_x, label_y, self.tf_name, curve_name)
self.output_points(self.tf_name, fpr, tpr, recall, precision)
示例3: __init__
# 需要导入模块: from rgt.GenomicRegionSet import GenomicRegionSet [as 别名]
# 或者: from rgt.GenomicRegionSet.GenomicRegionSet import sort_score [as 别名]
#.........这里部分代码省略.........
for i, region in enumerate(self.dna_region):
dbs_counts = str(len(self.region_dbs[region.toString()]))
dbs_cover = value2str(self.region_coverage[region.toString()])
newline = [str(i + 1),
'<a href="http://genome.ucsc.edu/cgi-bin/hgTracks?db=' + self.organism +
"&position=" + region.chrom + "%3A" + str(region.initial) + "-" + str(region.final) +
'" style="text-align:left">' + region.toString(space=True) + '</a>',
split_gene_name(gene_name=region.name, org=self.organism),
'<a href="region_dbs.html#' + region.toString() +
'" style="text-align:left">' + dbs_counts + '</a>',
dbs_cover]
if score:
dbs_score = value2str(score_list[i])
region.data = "\t".join([dbs_counts, dbs_cover, dbs_score, str(rank_sum[i])])
newline.append(dbs_score)
newline.append(str(rank_sum[i]))
else:
region.data = "\t".join([dbs_counts, dbs_cover, str(rank_sum[i])])
newline.append(str(rank_sum[i]))
data_table.append(newline)
data_table = natsort.natsorted(data_table, key=lambda x: x[-1])
# data_table = sorted(data_table, key=lambda x: x[-1])
html.add_zebra_table(header_list, col_size_list, type_list, data_table, align=align, cell_align="left",
auto_width=True, header_titles=header_titles, sortable=True)
html.add_heading("Notes")
html.add_list(["All target regions without any bindings are ignored."])
html.add_fixed_rank_sortable()
html.write(os.path.join(directory, "target_regions.html"))
self.dna_region.sort_score()
self.dna_region.write_bed(os.path.join(directory, obed + "_target_regions.bed"))
##############################################################################################
# starget_regions.html for significant target regions
stargets = GenomicRegionSet("sig_targets")
sig_dbs = {}
sig_dbs_coverage = {}
for i, r in enumerate(self.dna_region):
sig_bindings = self.region_dbs[r.toString()].overlap_rbss(rbss=self.data["region"]["sig_region"])
dbs = sig_bindings.get_dbs()
if len(dbs) > 0:
stargets.add(r)
m_dbs = dbs.merge(w_return=True)
sig_dbs[r] = len(dbs)
# self.promoter["de"]["merged_dbs"][promoter.toString()] = len(m_dbs)
sig_dbs_coverage[r] = float(m_dbs.total_coverage()) / len(r)
html = Html(name=html_header, links_dict=link_ds, # fig_dir=os.path.join(directory,"style"),
fig_rpath="../style", RGT_header=False, other_logo="TDF", homepage="../index.html")
# Select promoters in sig DBD
if len(self.data["region"]["sig_region"]) == 0:
html.add_heading("There is no significant DBD.")
else:
html.add_heading("Target regions bound by significant DBD")
data_table = []
# Calculate the ranking
rank_count = len(stargets) - rank_array([sig_dbs[p] for p in stargets])
rank_coverage = len(stargets) - rank_array([sig_dbs_coverage[p] for p in stargets])