当前位置: 首页>>代码示例>>Python>>正文


Python Connector.to_host方法代码示例

本文整理汇总了Python中quagga.connector.Connector.to_host方法的典型用法代码示例。如果您正苦于以下问题:Python Connector.to_host方法的具体用法?Python Connector.to_host怎么用?Python Connector.to_host使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在quagga.connector.Connector的用法示例。


在下文中一共展示了Connector.to_host方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_bprop_vector

# 需要导入模块: from quagga.connector import Connector [as 别名]
# 或者: from quagga.connector.Connector import to_host [as 别名]
    def test_bprop_vector(self):
        r = []
        for _ in xrange(self.N):
            embd_dim = self.rng.random_integers(10000)
            batch_size, output_dim = self.rng.random_integers(2000, size=2)
            W = self.get_orthogonal_matrix(embd_dim, output_dim)
            row_idxs = self.rng.randint(embd_dim, size=(batch_size, 1)).astype(np.int32)
            true_labels = self.rng.randint(output_dim, size=(batch_size, 1)).astype(np.int32)
            device_id = 0

            output = {}
            for processor_type in ['gpu', 'cpu']:
                quagga.processor_type = processor_type
                qrow_idxs = Connector(Matrix.from_npa(row_idxs))
                qtrue_labels = Connector(Matrix.from_npa(true_labels))
                qW = Connector(Matrix.from_npa(W), device_id)
                row_slicing_block = RowSlicingBlock(qW, qrow_idxs)
                sce_block = SoftmaxCeBlock(row_slicing_block.output, qtrue_labels)
                qW.fprop()
                qrow_idxs.fprop()
                row_slicing_block.fprop()
                sce_block.fprop()
                sce_block.bprop()
                row_slicing_block.bprop()
                qW.add(Context(), qW.backward_matrix)
                output[processor_type] = qW.to_host()

            r.append(np.allclose(output['gpu'], output['cpu']))

        self.assertEqual(sum(r), len(r))
开发者ID:Sandy4321,项目名称:quagga,代码行数:32,代码来源:test_RowSlicingBlock.py

示例2: SoftmaxCeBlock

# 需要导入模块: from quagga.connector import Connector [as 别名]
# 或者: from quagga.connector.Connector import to_host [as 别名]
class SoftmaxCeBlock(object):
    """
    Softmax nonlinearity with mean cross entropy loss
    """

    def __init__(self, x, true_labels, mask=None, device_id=None):
        self.context = Context(device_id)
        device_id = self.context.device_id
        if x.bpropagable:
            self.x, self.dL_dx = x.register_usage(device_id, device_id)
        else:
            self.x = x.register_usage(device_id)
        self.true_labels = true_labels.register_usage(device_id)
        if mask:
            self.mask = mask.register_usage(device_id)
        self.probs = Connector(Matrix.empty_like(self.x))
        self.loss = None

    def fprop(self):
        self.x.softmax(self.context, self.probs)
        self.probs.fprop()

    def bprop(self):
        if not hasattr(self, 'dL_dx'):
            return
        # error = (probs - true_labels) / M
        if self.true_labels.dtype == 'int':
            self.dL_dx.add_softmax_ce_derivative(self.context, self.probs, self.true_labels)
        else:
            self.dL_dx.add_scaled_subtraction(self.context, 1. / self.probs.nrows, self.probs, self.true_labels)
        if hasattr(self, 'mask'):
            self.dL_dx.hprod(self.context, self.mask)

    def calculate_loss(self, context):
        true_labels_np = self.true_labels.to_host(context)
        probs_np = self.probs.to_host(context)
        if hasattr(self, 'mask'):
            mask = self.mask.to_host(context)
            context.add_callback(self._calculate_ce_loss, true_labels_np, probs_np, mask)
        else:
            context.add_callback(self._calculate_ce_loss, true_labels_np, probs_np)

    def _calculate_ce_loss(self, true_labels_np, probs_np, mask=None):
        if self.true_labels.dtype == 'int':
            idxs = range(probs_np.shape[0]), true_labels_np.flatten()
            logs = np.log(probs_np[idxs] + 1e-20)
        else:
            logs = np.log(np.sum(true_labels_np * probs_np, axis=1) + 1e-20)
        if mask is not None:
            logs *= mask[:, 0]
            self.loss = - np.sum(logs) / np.sum(mask)
        else:
            self.loss = - np.mean(logs)
开发者ID:Sandy4321,项目名称:quagga,代码行数:55,代码来源:SoftmaxCeBlock.py

示例3: SigmoidCeBlock

# 需要导入模块: from quagga.connector import Connector [as 别名]
# 或者: from quagga.connector.Connector import to_host [as 别名]
class SigmoidCeBlock(object):
    """
    Sigmoid nonlinearity with mean cross entropy loss
    """

    def __init__(self, x, true_labels, mask=None, device_id=None):
        self.context = Context(device_id)
        device_id = self.context.device_id
        if x.bpropagable:
            self.x, self.dL_dx = x.register_usage(device_id, device_id)
        else:
            self.x = x.register_usage(device_id)
        self.true_labels = true_labels.register_usage(device_id)
        if mask:
            self.mask = mask.register_usage(device_id)
        self.probs = Connector(Matrix.empty_like(self.x))
        self.loss = None

    def fprop(self):
        self.x.sigmoid(self.context, self.probs)
        self.probs.fprop()

    def bprop(self):
        # error = (probs - true_labels) / M
        self.dL_dx.add_scaled_subtraction(self.context,
                                          1. / float(self.probs.nrows),
                                          self.probs, self.true_labels)
        if hasattr(self, 'mask'):
            self.dL_dx.hprod(self.context, self.mask)

    def calculate_loss(self, context):
        true_labels_np = self.true_labels.to_host(context)
        probs_np = self.probs.to_host(context)
        if hasattr(self, 'mask'):
            mask = self.mask.to_host(context)
            context.add_callback(self._calculate_ce_loss,
                                 true_labels_np, probs_np, mask)
        else:
            context.add_callback(self._calculate_ce_loss,
                                 true_labels_np, probs_np)

    def _calculate_ce_loss(self, true_labels_np, probs_np, mask=None):
        logs = true_labels_np * np.log(probs_np + 1e-20) + \
               (1.0 - true_labels_np) * np.log(1. - probs_np + 1e-20)
        if mask is not None:
            logs *= mask
            self.loss = - np.sum(logs) / (np.sum(mask) * logs.shape[1])
        else:
            self.loss = - np.mean(logs)
开发者ID:Sandy4321,项目名称:quagga,代码行数:51,代码来源:SigmoidCeBlock.py

示例4: test_theano_bprop_matrix

# 需要导入模块: from quagga.connector import Connector [as 别名]
# 或者: from quagga.connector.Connector import to_host [as 别名]
    def test_theano_bprop_matrix(self):
        r = []
        for i in xrange(self.N):
            max_input_sequence_len = self.rng.random_integers(300)
            sequence_len = max_input_sequence_len if i == 0 else self.rng.random_integers(2, max_input_sequence_len)
            embd_dim = self.rng.random_integers(10000)
            batch_size = self.rng.random_integers(500)
            output_dim = self.rng.random_integers(2000)
            W = self.get_orthogonal_matrix(embd_dim, output_dim)
            row_idxs = self.rng.randint(embd_dim, size=(batch_size, max_input_sequence_len)).astype(np.int32)
            true_labels = [self.rng.randint(output_dim, size=(batch_size, 1)).astype(np.int32) for _ in xrange(max_input_sequence_len)]
            device_id = 0

            quagga.processor_type = 'gpu'
            qrow_idxs = Connector(Matrix.from_npa(row_idxs))
            qtrue_labels = List([Connector(Matrix.from_npa(e)) for e in true_labels], qrow_idxs.ncols)
            qW = Connector(Matrix.from_npa(W), device_id)
            row_slicing_block = RowSlicingBlock(qW, qrow_idxs)
            seq_sce_block = SequencerBlock(block_class=SoftmaxCeBlock,
                                           params=[],
                                           sequences=[row_slicing_block.output, qtrue_labels])
            qW.fprop()
            qrow_idxs.ncols = sequence_len
            qrow_idxs.fprop()
            row_slicing_block.fprop()
            seq_sce_block.fprop()
            seq_sce_block.bprop()
            row_slicing_block.bprop()
            qW.add(Context(), qW.backward_matrix)

            th_row_idxs = T.imatrix()
            th_true_labels = T.imatrix()
            row_slicing_layer = RowSlicingLayer(W)
            toutput = row_slicing_layer.get_output_expr(th_row_idxs)
            loss = SequentialSoftmaxLayer.get_loss(toutput, th_true_labels)
            dL_dW = T.grad(loss, row_slicing_layer.W)
            fun = theano.function([th_row_idxs, th_true_labels],
                                  updates=[(row_slicing_layer.W, row_slicing_layer.W + dL_dW)])
            fun(row_idxs, np.hstack(true_labels[:sequence_len]))

            r.append(np.allclose(qW.to_host(), row_slicing_layer.W.get_value(), atol=1e-5))

        self.assertEqual(sum(r), len(r))
开发者ID:Sandy4321,项目名称:quagga,代码行数:45,代码来源:test_RowSlicingBlock.py

示例5: test_theano_bprop_vector

# 需要导入模块: from quagga.connector import Connector [as 别名]
# 或者: from quagga.connector.Connector import to_host [as 别名]
    def test_theano_bprop_vector(self):
        r = []
        for _ in xrange(self.N):
            embd_dim = self.rng.random_integers(10000)
            batch_size, output_dim = self.rng.random_integers(2000, size=2)
            W = self.get_orthogonal_matrix(embd_dim, output_dim)
            row_idxs = self.rng.randint(embd_dim, size=(batch_size, 1)).astype(np.int32)
            true_labels = self.rng.randint(output_dim, size=(batch_size, 1)).astype(np.int32)
            device_id = 0

            quagga.processor_type = 'gpu'
            qrow_idxs = Connector(Matrix.from_npa(row_idxs))
            qW = Connector(Matrix.from_npa(W), device_id)
            qtrue_labels = Connector(Matrix.from_npa(true_labels))
            row_slicing_block = RowSlicingBlock(qW, qrow_idxs)
            sce_block = SoftmaxCeBlock(row_slicing_block.output, qtrue_labels)
            qtrue_labels.fprop()
            qW.fprop()
            qrow_idxs.fprop()
            row_slicing_block.fprop()
            sce_block.fprop()
            sce_block.bprop()
            row_slicing_block.bprop()
            qW.add(Context(), qW.backward_matrix)

            th_row_idxs = T.ivector()
            th_true_labels = T.ivector()
            row_slicing_layer = RowSlicingLayer(W)
            toutput = row_slicing_layer.get_output_expr(th_row_idxs)
            loss = SoftmaxLayer.get_loss(toutput, th_true_labels)
            dL_dW = T.grad(loss, row_slicing_layer.W)
            fun = theano.function([th_row_idxs, th_true_labels],
                                  updates=[(row_slicing_layer.W, row_slicing_layer.W + dL_dW)])
            fun(row_idxs[:, 0], true_labels[:, 0])
            r.append(np.allclose(qW.to_host(), row_slicing_layer.W.get_value()))

        self.assertEqual(sum(r), len(r))
开发者ID:Sandy4321,项目名称:quagga,代码行数:39,代码来源:test_RowSlicingBlock.py

示例6: test_bprop_matrix

# 需要导入模块: from quagga.connector import Connector [as 别名]
# 或者: from quagga.connector.Connector import to_host [as 别名]
    def test_bprop_matrix(self):
        r = []
        for i in xrange(self.N):
            max_input_sequence_len = self.rng.random_integers(500)
            sequence_len = max_input_sequence_len if i == 0 else self.rng.random_integers(max_input_sequence_len)
            embd_dim = self.rng.random_integers(10000)
            batch_size = self.rng.random_integers(500)
            output_dim = self.rng.random_integers(2000)
            W = self.get_orthogonal_matrix(embd_dim, output_dim)
            row_idxs = self.rng.randint(embd_dim, size=(batch_size, max_input_sequence_len)).astype(np.int32)
            true_labels = [self.rng.randint(output_dim, size=(batch_size, 1)).astype(np.int32) for _ in xrange(max_input_sequence_len)]
            device_id = 0

            output = {}
            for processor_type in ['gpu', 'cpu']:
                quagga.processor_type = processor_type
                qrow_idxs = Connector(Matrix.from_npa(row_idxs))
                qtrue_labels = List([Connector(Matrix.from_npa(e)) for e in true_labels], qrow_idxs.ncols)
                qW = Connector(Matrix.from_npa(W), device_id)
                row_slicing_block = RowSlicingBlock(qW, qrow_idxs)
                seq_sce_block = SequencerBlock(block_class=SoftmaxCeBlock,
                                               params=[],
                                               sequences=[row_slicing_block.output, qtrue_labels])
                qW.fprop()
                qrow_idxs.ncols = sequence_len
                qrow_idxs.fprop()
                row_slicing_block.fprop()
                seq_sce_block.fprop()
                seq_sce_block.bprop()
                row_slicing_block.bprop()
                qW.add(Context(), qW.backward_matrix)
                output[processor_type] = qW.to_host()

            r.append(np.allclose(output['gpu'], output['cpu']))

        self.assertEqual(sum(r), len(r))
开发者ID:Sandy4321,项目名称:quagga,代码行数:38,代码来源:test_RowSlicingBlock.py

示例7: test_theano_grad

# 需要导入模块: from quagga.connector import Connector [as 别名]
# 或者: from quagga.connector.Connector import to_host [as 别名]
    def test_theano_grad(self):
        class SequentialMeanPoolingLayer(object):
            def get_output_expr(self, input_sequence):
                return T.mean(input_sequence, axis=2)

        class LogisticRegressionLayer(object):
            def __init__(self, W_init, b_init):
                self.W = theano.shared(value=W_init())
                self.b = theano.shared(value=b_init())

            def get_output_expr(self, input_expr):
                return T.nnet.sigmoid(T.dot(input_expr, self.W) + self.b)

        quagga.processor_type = 'gpu'
        r = []
        for i in xrange(self.N):
            max_input_sequence_len = self.rng.random_integers(500)
            sequence_len = max_input_sequence_len if i == 0 else self.rng.random_integers(max_input_sequence_len)
            batch_size = self.rng.random_integers(512)
            dim = self.rng.random_integers(1500)
            x = [self.rng.rand(batch_size, dim).astype(dtype=np.float32) for _ in xrange(max_input_sequence_len)]
            true_labels = self.rng.randint(1, size=(batch_size, 1)).astype(dtype=np.float32)

            W_init = self.get_orthogonal_initializer(dim, 1)
            b_init = lambda: self.rng.rand(1, 1).astype(dtype=np.float32)

            # Theano model
            state = self.rng.get_state()
            th_x = T.ftensor3()
            th_true_labels = T.fmatrix()
            smp_layer = SequentialMeanPoolingLayer()
            lr_layer = LogisticRegressionLayer(W_init, lambda: b_init()[0])
            probs = lr_layer.get_output_expr(smp_layer.get_output_expr(th_x))
            loss = T.mean(T.nnet.binary_crossentropy(probs, th_true_labels))
            grad_x = T.grad(loss, wrt=th_x)
            get_grad_x = theano.function([th_x, th_true_labels], grad_x)

            # quagga model
            self.rng.set_state(state)
            context = Context()
            x = List([Connector(Matrix.from_npa(e), context, context) for e in x])
            true_labels = Connector(Matrix.from_npa(true_labels))
            smp_block = SequentialMeanPoolingBlock(x)
            dot_block = DotBlock(W_init, b_init, smp_block.output)
            sce_block = SigmoidCeBlock(dot_block.output, true_labels)
            x.set_length(sequence_len)
            smp_block.fprop()
            dot_block.fprop()
            sce_block.fprop()
            sce_block.bprop()
            dot_block.bprop()
            smp_block.bprop()

            dL_dx = [e.backward_matrix.to_host() for e in x]
            dL_dx_th = get_grad_x(np.dstack([e.to_host() for e in x]), true_labels.to_host())
            for i in xrange(dL_dx_th.shape[-1]):
                if not np.allclose(dL_dx[i], dL_dx_th[..., i]):
                    r.append(False)
                    break
            else:
                r.append(True)

        self.assertEqual(sum(r), self.N)
开发者ID:Sandy4321,项目名称:quagga,代码行数:65,代码来源:test_SequentialMeanPoolingBlock.py


注:本文中的quagga.connector.Connector.to_host方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。