本文整理汇总了Python中pythalesians.graphics.graphs.graphproperties.GraphProperties.source方法的典型用法代码示例。如果您正苦于以下问题:Python GraphProperties.source方法的具体用法?Python GraphProperties.source怎么用?Python GraphProperties.source使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pythalesians.graphics.graphs.graphproperties.GraphProperties
的用法示例。
在下文中一共展示了GraphProperties.source方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: TimeSeriesRequest
# 需要导入模块: from pythalesians.graphics.graphs.graphproperties import GraphProperties [as 别名]
# 或者: from pythalesians.graphics.graphs.graphproperties.GraphProperties import source [as 别名]
end = datetime.datetime.utcnow()
start_date = end.replace(hour=0, minute=0, second=0, microsecond=0) # Returns a copy
time_series_request = TimeSeriesRequest(
start_date = start_date, # start date
finish_date = datetime.datetime.utcnow(), # finish date
freq = 'intraday', # intraday data
data_source = 'bloomberg', # use Bloomberg as data source
tickers = ['EURUSD'] , # ticker (Thalesians)
fields = ['close'], # which fields to download
vendor_tickers = ['EURUSD BGN Curncy'], # ticker (Bloomberg)
vendor_fields = ['close'], # which Bloomberg fields to download
cache_algo = 'internet_load_return') # how to return data
ltsf = LightTimeSeriesFactory()
df = ltsf.harvest_time_series(time_series_request)
df.columns = [x.replace('.close', '') for x in df.columns.values]
gp = GraphProperties()
gp.title = 'EURUSD stuff!'
gp.file_output = 'EURUSD.png'
gp.source = 'Thalesians/BBG (created with PyThalesians Python library)'
pf = PlotFactory()
pf.plot_line_graph(df, adapter = 'pythalesians', gp = gp)
pytwitter.update_status("check out my plot of EUR/USD!", picture = gp.file_output)
示例2: ticker
# 需要导入模块: from pythalesians.graphics.graphs.graphproperties import GraphProperties [as 别名]
# 或者: from pythalesians.graphics.graphs.graphproperties.GraphProperties import source [as 别名]
tickers = tickers, # ticker (Thalesians)
fields = ['close'], # which fields to download
vendor_tickers = vendor_tickers, # ticker (Bloomberg)
vendor_fields = ['PX_LAST'], # which Bloomberg fields to download
cache_algo = 'internet_load_return') # how to return data
daily_vals = ltsf.harvest_time_series(time_series_request)
# resample for end of month
daily_vals = daily_vals.resample('BM')
daily_vals = daily_vals / daily_vals.shift(1) - 1
daily_vals.index = [str(x.year) + '/' + str(x.month) for x in daily_vals.index]
daily_vals = daily_vals.drop(daily_vals.head(1).index)
pf = PlotFactory()
gp = GraphProperties()
gp.source = 'Thalesians/BBG'
gp.html_file_output = "output_data/equities.htm"
gp.title = 'Recent monthly changes in equity markets'
gp.scale_factor = 2
gp.display_legend = True
gp.chart_type = ['bar', 'scatter', 'line']
gp.x_title = 'Dates'
gp.y_title = 'Pc'
# plot using Bokeh then PyThalesians
pf.plot_bar_graph(daily_vals * 100, adapter = 'bokeh', gp = gp)
pf.plot_bar_graph(daily_vals * 100, adapter = 'pythalesians', gp = gp)
示例3: ticker
# 需要导入模块: from pythalesians.graphics.graphs.graphproperties import GraphProperties [as 别名]
# 或者: from pythalesians.graphics.graphs.graphproperties.GraphProperties import source [as 别名]
vendor_tickers=vendor_tickers, # ticker (Bloomberg)
vendor_fields=["PX_LAST"], # which Bloomberg fields to download
cache_algo="internet_load_return",
) # how to return data
daily_vals = ltsf.harvest_time_series(time_series_request)
# resample for end of month
daily_vals = daily_vals.resample("BM")
daily_vals = daily_vals / daily_vals.shift(1) - 1
daily_vals.index = [str(x.year) + "/" + str(x.month) for x in daily_vals.index]
daily_vals = daily_vals.drop(daily_vals.head(1).index)
pf = PlotFactory()
gp = GraphProperties()
gp.source = "Thalesians/BBG"
gp.html_file_output = "output_data/equities.htm"
gp.title = "Recent monthly changes in equity markets"
gp.scale_factor = 2
gp.display_legend = True
gp.chart_type = ["bar", "scatter", "line"]
gp.x_title = "Dates"
gp.y_title = "Pc"
# plot using Bokeh then PyThalesians
pf.plot_bar_graph(daily_vals * 100, adapter="bokeh", gp=gp)
pf.plot_bar_graph(daily_vals * 100, adapter="pythalesians", gp=gp)
示例4: LightTimeSeriesFactory
# 需要导入模块: from pythalesians.graphics.graphs.graphproperties import GraphProperties [as 别名]
# 或者: from pythalesians.graphics.graphs.graphproperties.GraphProperties import source [as 别名]
cache_algo = 'internet_load_return') # how to return data
ltsf = LightTimeSeriesFactory()
asset_df = ltsf.harvest_time_series(time_series_request)
spot_df = asset_df
logger.info("Running backtest...")
# use technical indicator to create signals
# (we could obviously create whatever function we wanted for generating the signal dataframe)
tech_ind = TechIndicator()
tech_ind.create_tech_ind(spot_df, indicator, tech_params); signal_df = tech_ind.get_signal()
# use the same data for generating signals
cash_backtest.calculate_trading_PnL(br, asset_df, signal_df)
port = cash_backtest.get_cumportfolio()
port.columns = [indicator + ' = ' + str(tech_params.sma_period) + ' ' + str(cash_backtest.get_portfolio_pnl_desc()[0])]
signals = cash_backtest.get_porfolio_signal()
# print the last positions (we could also save as CSV etc.)
print(signals.tail(1))
pf = PlotFactory()
gp = GraphProperties()
gp.title = "Thalesians FX trend strategy"
gp.source = 'Thalesians/BBG (calc with PyThalesians Python library)'
gp.scale_factor = 3
gp.file_output = 'output_data/FX-trend-example.png'
pf.plot_line_graph(port, adapter = 'pythalesians', gp = gp)