本文整理汇总了Python中pythalesians.graphics.graphs.graphproperties.GraphProperties.color方法的典型用法代码示例。如果您正苦于以下问题:Python GraphProperties.color方法的具体用法?Python GraphProperties.color怎么用?Python GraphProperties.color使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pythalesians.graphics.graphs.graphproperties.GraphProperties
的用法示例。
在下文中一共展示了GraphProperties.color方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_strategy_group_benchmark_annualised_pnl
# 需要导入模块: from pythalesians.graphics.graphs.graphproperties import GraphProperties [as 别名]
# 或者: from pythalesians.graphics.graphs.graphproperties.GraphProperties import color [as 别名]
def plot_strategy_group_benchmark_annualised_pnl(self, cols = None):
# TODO - unfinished, needs checking!
if cols is None: cols = self._strategy_group_benchmark_annualised_pnl.columns
pf = PlotFactory()
gp = GraphProperties()
gp.title = self.FINAL_STRATEGY
gp.display_legend = True
gp.scale_factor = self.SCALE_FACTOR
gp.color = ['red', 'blue', 'purple', 'gray', 'yellow', 'green', 'pink']
gp.file_output = self.DUMP_PATH + self.FINAL_STRATEGY + ' (Group Benchmark Annualised PnL).png'
pf.plot_line_graph(self.reduce_plot(self._strategy_group_benchmark_annualised_pnl[cols]), adapter = 'pythalesians', gp = gp)
示例2: run_day_of_month_analysis
# 需要导入模块: from pythalesians.graphics.graphs.graphproperties import GraphProperties [as 别名]
# 或者: from pythalesians.graphics.graphs.graphproperties.GraphProperties import color [as 别名]
def run_day_of_month_analysis(self, strat):
from pythalesians.economics.seasonality.seasonality import Seasonality
from pythalesians.timeseries.calcs.timeseriescalcs import TimeSeriesCalcs
tsc = TimeSeriesCalcs()
seas = Seasonality()
strat.construct_strategy()
pnl = strat.get_strategy_pnl()
# get seasonality by day of the month
pnl = pnl.resample('B').mean()
rets = tsc.calculate_returns(pnl)
bus_day = seas.bus_day_of_month_seasonality(rets, add_average = True)
# get seasonality by month
pnl = pnl.resample('BM').mean()
rets = tsc.calculate_returns(pnl)
month = seas.monthly_seasonality(rets)
self.logger.info("About to plot seasonality...")
gp = GraphProperties()
pf = PlotFactory()
# Plotting spot over day of month/month of year
gp.color = 'Blues'
gp.scale_factor = self.scale_factor
gp.file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' seasonality day of month.png'
gp.title = strat.FINAL_STRATEGY + ' day of month seasonality'
gp.display_legend = False
gp.color_2_series = [bus_day.columns[-1]]
gp.color_2 = ['red'] # red, pink
gp.linewidth_2 = 4
gp.linewidth_2_series = [bus_day.columns[-1]]
gp.y_axis_2_series = [bus_day.columns[-1]]
pf.plot_line_graph(bus_day, adapter = 'pythalesians', gp = gp)
gp = GraphProperties()
gp.scale_factor = self.scale_factor
gp.file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' seasonality month of year.png'
gp.title = strat.FINAL_STRATEGY + ' month of year seasonality'
pf.plot_line_graph(month, adapter = 'pythalesians', gp = gp)
return month
示例3: run_arbitrary_sensitivity
# 需要导入模块: from pythalesians.graphics.graphs.graphproperties import GraphProperties [as 别名]
# 或者: from pythalesians.graphics.graphs.graphproperties.GraphProperties import color [as 别名]
def run_arbitrary_sensitivity(self, strat, parameter_list = None, parameter_names = None,
pretty_portfolio_names = None, parameter_type = None):
asset_df, spot_df, spot_df2, basket_dict = strat.fill_assets()
port_list = None
for i in range(0, len(parameter_list)):
br = strat.fill_backtest_request()
current_parameter = parameter_list[i]
# for calculating P&L
for k in current_parameter.keys():
setattr(br, k, current_parameter[k])
strat.br = br # for calculating signals
signal_df = strat.construct_signal(spot_df, spot_df2, br.tech_params)
cash_backtest = CashBacktest()
self.logger.info("Calculating... " + pretty_portfolio_names[i])
cash_backtest.calculate_trading_PnL(br, asset_df, signal_df)
stats = str(cash_backtest.get_portfolio_pnl_desc()[0])
port = cash_backtest.get_cumportfolio().resample('B')
port.columns = [pretty_portfolio_names[i] + ' ' + stats]
if port_list is None:
port_list = port
else:
port_list = port_list.join(port)
pf = PlotFactory()
gp = GraphProperties()
gp.color = 'Blues'
gp.resample = 'B'
gp.file_output = self.DUMP_PATH + strat.FINAL_STRATEGY + ' ' + parameter_type + '.png'
gp.scale_factor = self.scale_factor
gp.title = strat.FINAL_STRATEGY + ' ' + parameter_type
pf.plot_line_graph(port_list, adapter = 'pythalesians', gp = gp)
示例4: EventStudy
# 需要导入模块: from pythalesians.graphics.graphs.graphproperties import GraphProperties [as 别名]
# 或者: from pythalesians.graphics.graphs.graphproperties.GraphProperties import color [as 别名]
df_event_times.index = df_event_times.index.tz_localize(utc_time) # work in UTC time
from pythalesians.economics.events.eventstudy import EventStudy
es = EventStudy()
# work out cumulative asset price moves moves over the event
df_event = es.get_intraday_moves_over_custom_event(df, df_event_times)
# create an average move
df_event['Avg'] = df_event.mean(axis = 1)
# plotting spot over economic data event
gp = GraphProperties()
gp.scale_factor = 3
gp.title = 'USDJPY spot moves over recent NFP'
# plot in shades of blue (so earlier releases are lighter, later releases are darker)
gp.color = 'Blues'; gp.color_2 = []
gp.y_axis_2_series = []
gp.display_legend = False
# last release will be in red, average move in orange
gp.color_2_series = [df_event.columns[-2], df_event.columns[-1]]
gp.color_2 = ['red', 'orange'] # red, pink
gp.linewidth_2 = 2
gp.linewidth_2_series = gp.color_2_series
pf = PlotFactory()
pf.plot_line_graph(df_event * 100, adapter = 'pythalesians', gp = gp)