当前位置: 首页>>代码示例>>Python>>正文


Python LatentSSVM.score方法代码示例

本文整理汇总了Python中pystruct.learners.LatentSSVM.score方法的典型用法代码示例。如果您正苦于以下问题:Python LatentSSVM.score方法的具体用法?Python LatentSSVM.score怎么用?Python LatentSSVM.score使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pystruct.learners.LatentSSVM的用法示例。


在下文中一共展示了LatentSSVM.score方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_latent_node_boxes_edge_features

# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import score [as 别名]
def test_latent_node_boxes_edge_features():
    # learn the "easy" 2x2 boxes dataset.
    # smoketest using a single constant edge feature

    X, Y = make_simple_2x2(seed=1, n_samples=40)
    latent_crf = EdgeFeatureLatentNodeCRF(n_labels=2, n_hidden_states=2, n_features=1)
    base_svm = OneSlackSSVM(latent_crf)
    base_svm.C = 10
    latent_svm = LatentSSVM(base_svm,
                            latent_iter=10)

    G = [make_grid_edges(x) for x in X]

    # make edges for hidden states:
    edges = make_edges_2x2()

    G = [np.vstack([make_grid_edges(x), edges]) for x in X]

    # reshape / flatten x and y
    X_flat = [x.reshape(-1, 1) for x in X]
    Y_flat = [y.ravel() for y in Y]

    #X_ = zip(X_flat, G, [2 * 2 for x in X_flat])
    # add edge features
    X_ = [(x, g, np.ones((len(g), 1)), 4) for x, g in zip(X_flat, G)]
    latent_svm.fit(X_[:20], Y_flat[:20])

    assert_array_equal(latent_svm.predict(X_[:20]), Y_flat[:20])
    assert_equal(latent_svm.score(X_[:20], Y_flat[:20]), 1)

    # test that score is not always 1
    assert_true(.98 < latent_svm.score(X_[20:], Y_flat[20:]) < 1)
开发者ID:pystruct,项目名称:pystruct,代码行数:34,代码来源:test_latent_node_crf_learning.py

示例2: test_latent_node_boxes_standard_latent

# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import score [as 别名]
def test_latent_node_boxes_standard_latent():
    # learn the "easy" 2x2 boxes dataset.
    # a 2x2 box is placed randomly in a 4x4 grid
    # we add a latent variable for each 2x2 patch
    # that should make the model fairly simple

    X, Y = make_simple_2x2(seed=1, n_samples=40)
    latent_crf = LatentNodeCRF(n_labels=2, n_hidden_states=2, n_features=1)
    one_slack = OneSlackSSVM(latent_crf)
    n_slack = NSlackSSVM(latent_crf)
    subgradient = SubgradientSSVM(latent_crf, max_iter=100)
    for base_svm in [one_slack, n_slack, subgradient]:
        base_svm.C = 10
        latent_svm = LatentSSVM(base_svm,
                                latent_iter=10)

        G = [make_grid_edges(x) for x in X]

        # make edges for hidden states:
        edges = make_edges_2x2()

        G = [np.vstack([make_grid_edges(x), edges]) for x in X]

        # reshape / flatten x and y
        X_flat = [x.reshape(-1, 1) for x in X]
        Y_flat = [y.ravel() for y in Y]

        X_ = list(zip(X_flat, G, [2 * 2 for x in X_flat]))
        latent_svm.fit(X_[:20], Y_flat[:20])

        assert_array_equal(latent_svm.predict(X_[:20]), Y_flat[:20])
        assert_equal(latent_svm.score(X_[:20], Y_flat[:20]), 1)

        # test that score is not always 1
        assert_true(.98 < latent_svm.score(X_[20:], Y_flat[20:]) < 1)
开发者ID:pystruct,项目名称:pystruct,代码行数:37,代码来源:test_latent_node_crf_learning.py

示例3: test_states

# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import score [as 别名]
def test_states(states, x, y, x_t, y_t, i, jobs):
    latent_pbl = GraphLDCRF(n_states_per_label=states, inference_method="qpbo")

    base_ssvm = NSlackSSVM(latent_pbl, C=1, tol=0.01, inactive_threshold=1e-3, batch_size=10, verbose=0, n_jobs=jobs)
    latent_svm = LatentSSVM(base_ssvm=base_ssvm, latent_iter=3)
    latent_svm.fit(x, y)

    test = latent_svm.score(x_t, y_t)
    train = latent_svm.score(x, y)

    plot_cm(latent_svm, y_t, x_t, str(states), i)

    print states, "Test:", test, "Train:", train
    return test, train
开发者ID:manelhr,项目名称:hidden_states,代码行数:16,代码来源:confusion_matrix.py

示例4: test_with_crosses_bad_init

# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import score [as 别名]
def test_with_crosses_bad_init():
    # use less perfect initialization
    rnd = np.random.RandomState(0)
    X, Y = toy.generate_crosses(n_samples=20, noise=5, n_crosses=1,
                                total_size=8)
    X_test, Y_test = X[10:], Y[10:]
    X, Y = X[:10], Y[:10]
    n_labels = 2
    crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=2)
    H_init = crf.init_latent(X, Y)

    mask = rnd.uniform(size=H_init.shape) > .7
    H_init[mask] = 2 * (H_init[mask] / 2)

    one_slack = OneSlackSSVM(crf, inactive_threshold=1e-8, cache_tol=.0001,
                             inference_cache=50, max_iter=10000)
    n_slack = NSlackSSVM(crf)
    subgradient = SubgradientSSVM(crf, max_iter=150, learning_rate=.01,
                                  momentum=0)

    for base_ssvm in [one_slack, n_slack, subgradient]:
        base_ssvm.C = 10. ** 2
        clf = LatentSSVM(base_ssvm)

        clf.fit(X, Y, H_init=H_init)
        Y_pred = clf.predict(X)

        assert_array_equal(np.array(Y_pred), Y)
        # test that score is not always 1
        assert_true(.98 < clf.score(X_test, Y_test) < 1)
开发者ID:abhijitbendale,项目名称:pystruct,代码行数:32,代码来源:test_latent_svm.py

示例5: test_switch_to_ad3

# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import score [as 别名]
def test_switch_to_ad3():
    # smoketest only
    # test if switching between qpbo and ad3 works inside latent svm
    # use less perfect initialization

    if not get_installed(['qpbo']) or not get_installed(['ad3']):
        return
    X, Y = generate_crosses(n_samples=20, noise=5, n_crosses=1, total_size=8)
    X_test, Y_test = X[10:], Y[10:]
    X, Y = X[:10], Y[:10]

    crf = LatentGridCRF(n_states_per_label=2,
                        inference_method='qpbo')
    crf.initialize(X, Y)
    H_init = crf.init_latent(X, Y)

    np.random.seed(0)
    mask = np.random.uniform(size=H_init.shape) > .7
    H_init[mask] = 2 * (H_init[mask] / 2)

    base_ssvm = OneSlackSSVM(crf, inactive_threshold=1e-8, cache_tol=.0001,
                             inference_cache=50, max_iter=10000,
                             switch_to=('ad3', {'branch_and_bound': True}),
                             C=10. ** 3)
    clf = LatentSSVM(base_ssvm)

    clf.fit(X, Y, H_init=H_init)
    assert_equal(clf.model.inference_method[0], 'ad3')

    Y_pred = clf.predict(X)

    assert_array_equal(np.array(Y_pred), Y)
    # test that score is not always 1
    assert_true(.98 < clf.score(X_test, Y_test) < 1)
开发者ID:DerThorsten,项目名称:pystruct,代码行数:36,代码来源:test_latent_svm.py

示例6: test_latent_node_boxes_standard_latent_features

# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import score [as 别名]
def test_latent_node_boxes_standard_latent_features():
    # learn the "easy" 2x2 boxes dataset.
    # we make it even easier now by adding features that encode the correct
    # latent state. This basically tests that the features are actually used

    X, Y = make_simple_2x2(seed=1, n_samples=20, n_flips=6)
    latent_crf = LatentNodeCRF(n_labels=2, n_hidden_states=2, n_features=1,
                               latent_node_features=True)
    one_slack = OneSlackSSVM(latent_crf)
    n_slack = NSlackSSVM(latent_crf)
    subgradient = SubgradientSSVM(latent_crf, max_iter=100, learning_rate=0.01,
                                  momentum=0)
    for base_svm in [one_slack, n_slack, subgradient]:
        base_svm.C = 10
        latent_svm = LatentSSVM(base_svm,
                                latent_iter=10)

        G = [make_grid_edges(x) for x in X]

        # make edges for hidden states:
        edges = make_edges_2x2()

        G = [np.vstack([make_grid_edges(x), edges]) for x in X]

        # reshape / flatten x and y
        X_flat = [x.reshape(-1, 1) for x in X]
        # augment X with the features for hidden units
        X_flat = [np.vstack([x, y[::2, ::2].reshape(-1, 1)])
                  for x, y in zip(X_flat, Y)]
        Y_flat = [y.ravel() for y in Y]

        X_ = zip(X_flat, G, [2 * 2 for x in X_flat])
        latent_svm.fit(X_[:10], Y_flat[:10])

        assert_array_equal(latent_svm.predict(X_[:10]), Y_flat[:10])
        assert_equal(latent_svm.score(X_[:10], Y_flat[:10]), 1)

        # we actually become prefect ^^
        assert_true(.98 < latent_svm.score(X_[10:], Y_flat[10:]) <= 1)
开发者ID:DerThorsten,项目名称:pystruct,代码行数:41,代码来源:test_latent_node_crf_learning.py

示例7: test_switch_to_ad3

# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import score [as 别名]
def test_switch_to_ad3():
    # smoketest only
    # test if switching between qpbo and ad3 works inside latent svm
    # use less perfect initialization

    if not get_installed(["qpbo"]) or not get_installed(["ad3"]):
        return
    X, Y = generate_crosses(n_samples=20, noise=5, n_crosses=1, total_size=8)
    X_test, Y_test = X[10:], Y[10:]
    X, Y = X[:10], Y[:10]

    crf = LatentGridCRF(n_states_per_label=2, inference_method="qpbo")
    crf.initialize(X, Y)
    H_init = crf.init_latent(X, Y)

    np.random.seed(0)
    mask = np.random.uniform(size=H_init.shape) > 0.7
    H_init[mask] = 2 * (H_init[mask] / 2)

    base_ssvm = OneSlackSSVM(
        crf,
        inactive_threshold=1e-8,
        cache_tol=0.0001,
        inference_cache=50,
        max_iter=10000,
        switch_to=("ad3", {"branch_and_bound": True}),
        C=10.0 ** 3,
    )
    clf = LatentSSVM(base_ssvm)

    # evil hackery to get rid of ad3 output
    try:
        devnull = open("/dev/null", "w")
        oldstdout_fno = os.dup(sys.stdout.fileno())
        os.dup2(devnull.fileno(), 1)
        replaced_stdout = True
    except:
        replaced_stdout = False

    clf.fit(X, Y, H_init=H_init)

    if replaced_stdout:
        os.dup2(oldstdout_fno, 1)
    assert_equal(clf.model.inference_method[0], "ad3")

    Y_pred = clf.predict(X)

    assert_array_equal(np.array(Y_pred), Y)
    # test that score is not always 1
    assert_true(0.98 < clf.score(X_test, Y_test) < 1)
开发者ID:shengshuyang,项目名称:pystruct,代码行数:52,代码来源:test_latent_svm.py

示例8: test_with_crosses_perfect_init

# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import score [as 别名]
def test_with_crosses_perfect_init():
    # very simple dataset. k-means init is perfect
    for n_states_per_label in [2, [1, 2]]:
        # test with 2 states for both foreground and background,
        # as well as with single background state
        X, Y = generate_crosses(n_samples=10, noise=5, n_crosses=1, total_size=8)
        n_labels = 2
        crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=n_states_per_label)
        clf = LatentSSVM(
            OneSlackSSVM(model=crf, max_iter=500, C=10, check_constraints=False, break_on_bad=False, inference_cache=50)
        )
        clf.fit(X, Y)
        Y_pred = clf.predict(X)
        assert_array_equal(np.array(Y_pred), Y)
        assert_equal(clf.score(X, Y), 1)
开发者ID:shengshuyang,项目名称:pystruct,代码行数:17,代码来源:test_latent_svm.py

示例9: test_with_crosses_base_svms

# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import score [as 别名]
def test_with_crosses_base_svms():
    # very simple dataset. k-means init is perfect
    n_labels = 2
    crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=[1, 2])
    one_slack = OneSlackSSVM(crf, inference_cache=50)
    n_slack = NSlackSSVM(crf)
    subgradient = SubgradientSSVM(crf, max_iter=400, learning_rate=0.01, decay_exponent=0, decay_t0=10)

    X, Y = generate_crosses(n_samples=10, noise=5, n_crosses=1, total_size=8)

    for base_ssvm in [one_slack, n_slack, subgradient]:
        base_ssvm.C = 100.0
        clf = LatentSSVM(base_ssvm=base_ssvm)
        clf.fit(X, Y)
        Y_pred = clf.predict(X)
        assert_array_equal(np.array(Y_pred), Y)
        assert_equal(clf.score(X, Y), 1)
开发者ID:shengshuyang,项目名称:pystruct,代码行数:19,代码来源:test_latent_svm.py

示例10: main

# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import score [as 别名]
def main():
    X, Y = toy.generate_crosses(n_samples=20, noise=5, n_crosses=1,
                                total_size=8)
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.5)
    n_labels = len(np.unique(Y_train))
    crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=[1, 2],
                        inference_method='lp')
    clf = LatentSSVM(problem=crf, max_iter=50, C=1000., verbose=2,
                     check_constraints=True, n_jobs=-1, break_on_bad=True)
    clf.fit(X_train, Y_train)

    i = 0
    for X_, Y_, H, name in [[X_train, Y_train, clf.H_init_, "train"],
                            [X_test, Y_test, [None] * len(X_test), "test"]]:
        Y_pred = clf.predict(X_)
        score = clf.score(X_, Y_)
        for x, y, h_init, y_pred in zip(X_, Y_, H, Y_pred):
            fig, ax = plt.subplots(4, 1)
            ax[0].matshow(y, vmin=0, vmax=crf.n_labels - 1)
            ax[0].set_title("Ground truth")
            ax[1].matshow(np.argmax(x, axis=-1), vmin=0, vmax=crf.n_labels - 1)
            ax[1].set_title("Unaries only")
            #if h_init is None:
                #ax[1, 0].set_visible(False)
            #else:
                #ax[1, 0].matshow(h_init, vmin=0, vmax=crf.n_states - 1)
                #ax[1, 0].set_title("latent initial")
            #ax[2].matshow(crf.latent(x, y, clf.w),
                          #vmin=0, vmax=crf.n_states - 1)
            #ax[2].set_title("latent final")
            ax[2].matshow(crf.inference(x, clf.w), vmin=0, vmax=crf.n_states
                          - 1)
            ax[2].set_title("Prediction for h")
            ax[3].matshow(y_pred, vmin=0, vmax=crf.n_labels - 1)
            ax[3].set_title("Prediction for y")
            for a in ax.ravel():
                a.set_xticks(())
                a.set_yticks(())
            plt.subplots_adjust(hspace=.5)
            fig.savefig("data_%s_%03d.png" % (name, i), bbox_inches="tight",
                        dpi=400)
            i += 1
        print("score %s set: %f" % (name, score))
    print(clf.w)
开发者ID:amueller,项目名称:segmentation,代码行数:46,代码来源:simple_crosses.py

示例11: test_with_crosses_bad_init

# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import score [as 别名]
def test_with_crosses_bad_init():
    # use less perfect initialization
    rnd = np.random.RandomState(0)
    X, Y = generate_crosses(n_samples=20, noise=5, n_crosses=1, total_size=8)
    X_test, Y_test = X[10:], Y[10:]
    X, Y = X[:10], Y[:10]
    crf = LatentGridCRF(n_states_per_label=2)
    crf.initialize(X, Y)
    H_init = crf.init_latent(X, Y)

    mask = rnd.uniform(size=H_init.shape) > 0.7
    H_init[mask] = 2 * (H_init[mask] / 2)

    one_slack_ssvm = OneSlackSSVM(crf, inactive_threshold=1e-8, cache_tol=0.0001, inference_cache=50, C=100)
    clf = LatentSSVM(one_slack_ssvm)

    clf.fit(X, Y, H_init=H_init)
    Y_pred = clf.predict(X)

    assert_array_equal(np.array(Y_pred), Y)
    # test that score is not always 1
    assert_true(0.98 < clf.score(X_test, Y_test) < 1)
开发者ID:shengshuyang,项目名称:pystruct,代码行数:24,代码来源:test_latent_svm.py

示例12: test_latent_node_boxes_standard_latent

# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import score [as 别名]
def test_latent_node_boxes_standard_latent():
    # learn the "easy" 2x2 boxes dataset.
    # a 2x2 box is placed randomly in a 4x4 grid
    # we add a latent variable for each 2x2 patch
    # that should make the model fairly simple

    X, Y = toy.make_simple_2x2(seed=1)
    latent_crf = LatentNodeCRF(n_labels=2, inference_method='lp',
                               n_hidden_states=2, n_features=1)
    one_slack = OneSlackSSVM(latent_crf)
    n_slack = StructuredSVM(latent_crf)
    subgradient = SubgradientSSVM(latent_crf, max_iter=100, learning_rate=0.01,
                                  momentum=0)
    for base_svm in [one_slack, n_slack, subgradient]:
        base_svm.C = 10
        latent_svm = LatentSSVM(base_svm,
                                latent_iter=10)

        G = [make_grid_edges(x) for x in X]

        # make edges for hidden states:
        edges = []
        node_indices = np.arange(4 * 4).reshape(4, 4)
        for i, (x, y) in enumerate(itertools.product([0, 2], repeat=2)):
            for j in xrange(x, x + 2):
                for k in xrange(y, y + 2):
                    edges.append([i + 4 * 4, node_indices[j, k]])

        G = [np.vstack([make_grid_edges(x), edges]) for x in X]

        # reshape / flatten x and y
        X_flat = [x.reshape(-1, 1) for x in X]
        Y_flat = [y.ravel() for y in Y]

        X_ = zip(X_flat, G, [2 * 2 for x in X_flat])
        latent_svm.fit(X_, Y_flat)

        assert_equal(latent_svm.score(X_, Y_flat), 1)
开发者ID:hushell,项目名称:pystruct,代码行数:40,代码来源:test_latent_node_crf_learning.py

示例13: test_switch_to_ad3

# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import score [as 别名]
def test_switch_to_ad3():
    # smoketest only
    # test if switching between qpbo and ad3 works inside latent svm
    # use less perfect initialization

    if not get_installed(['qpbo']) or not get_installed(['ad3']):
        return
    X, Y = toy.generate_crosses(n_samples=20, noise=5, n_crosses=1,
                                total_size=8)
    X_test, Y_test = X[10:], Y[10:]
    X, Y = X[:10], Y[:10]
    n_labels = 2
    crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=2,
                        inference_method='qpbo')
    H_init = crf.init_latent(X, Y)

    np.random.seed(0)
    mask = np.random.uniform(size=H_init.shape) > .7
    H_init[mask] = 2 * (H_init[mask] / 2)

    base_ssvm = OneSlackSSVM(crf, inactive_threshold=1e-8, cache_tol=.0001,
                             inference_cache=50, max_iter=10000,
                             switch_to='ad3bb', C=10. ** 3)
    clf = LatentSSVM(base_ssvm)

    clf.fit(X, Y, H_init=H_init)
    # we actually switch back from ad3bb to the original
    assert_equal(clf.model.inference_method, "qpbo")

    # unfortunately this test only works with ad3
    clf.base_ssvm.model.inference_method = 'ad3bb'
    Y_pred = clf.predict(X)

    assert_array_equal(np.array(Y_pred), Y)
    # test that score is not always 1
    assert_true(.98 < clf.score(X_test, Y_test) < 1)
开发者ID:aurora1625,项目名称:pystruct,代码行数:38,代码来源:test_latent_svm.py

示例14: LatentGraphCRF

# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import score [as 别名]
# Now, use a latent-variabile CRF model with SVM training.
# 5 states per label is enough capacity to encode the 5 digit classes.

latent_pbl = LatentGraphCRF(n_states_per_label=5,
                            inference_method='unary')
base_ssvm = NSlackSSVM(latent_pbl, C=1, tol=.01,
                       inactive_threshold=1e-3, batch_size=10)
latent_svm = LatentSSVM(base_ssvm=base_ssvm, latent_iter=2)
latent_svm.fit(X_train_, y_train)

print("Score with binary SVM:")
print("Train: {:2.2f}".format(svm.score(X_train_, y_train)))
print("Test: {:2.2f}".format(svm.score(X_test_, y_test)))

print("Score with latent SVM:")
print("Train: {:2.2f}".format(latent_svm.score(X_train_, y_train)))
print("Test: {:2.2f}".format(latent_svm.score(X_test_, y_test)))

h_pred = np.hstack(latent_svm.predict_latent(X_test_))
print("Latent class counts: %s" % repr(np.bincount(h_pred)))

# plot first few digits from each latent class

plt.figure(figsize=(3, 5))
plt.suptitle("Example digits from each of\nthe ten latent classes.")
n_latent_classes = 10
n_examples = 7
for latent_class in range(n_latent_classes):
    examples = X_test[h_pred == latent_class][:n_examples]
    for k, example in enumerate(examples):
        plt.subplot(n_latent_classes, n_examples,
开发者ID:pystruct,项目名称:pystruct,代码行数:33,代码来源:plot_latent_svm_as_crf.py

示例15: generate_crosses

# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import score [as 别名]
from pystruct.models import LatentGridCRF
from pystruct.learners import LatentSSVM, OneSlackSSVM

from pystruct.datasets import generate_crosses


X, Y = generate_crosses(n_samples=20, noise=5, n_crosses=1, total_size=8)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.5,
                                                    force_arrays=False)

crf = LatentGridCRF(n_states_per_label=[1, 2])
base_ssvm = OneSlackSSVM(model=crf, C=10., n_jobs=-1, inference_cache=20,
                         tol=.1)
clf = LatentSSVM(base_ssvm=base_ssvm)
clf.fit(X_train, Y_train)
print("Score training set: %f" % clf.score(X_train, Y_train))
print("Score test set: %f" % clf.score(X_test, Y_test))

Y_pred = clf.predict(X_test)

x, y, y_pred = X_test[1], Y_test[1], Y_pred[1]
fig, ax = plt.subplots(3, 2)
ax[0, 0].matshow(y, vmin=0, vmax=crf.n_labels - 1)
ax[0, 0].set_title("ground truth")
ax[0, 1].matshow(np.argmax(x, axis=-1),
                 vmin=0, vmax=crf.n_labels - 1)
ax[0, 1].set_title("unaries only")
ax[1, 0].set_visible(False)
ax[1, 1].matshow(crf.latent(x, y, clf.w),
                 vmin=0, vmax=crf.n_states - 1)
ax[1, 1].set_title("latent final")
开发者ID:chagge,项目名称:pystruct,代码行数:33,代码来源:plot_latent_crf.py


注:本文中的pystruct.learners.LatentSSVM.score方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。