本文整理汇总了Python中pystruct.learners.LatentSSVM.predict方法的典型用法代码示例。如果您正苦于以下问题:Python LatentSSVM.predict方法的具体用法?Python LatentSSVM.predict怎么用?Python LatentSSVM.predict使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pystruct.learners.LatentSSVM
的用法示例。
在下文中一共展示了LatentSSVM.predict方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_switch_to_ad3
# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import predict [as 别名]
def test_switch_to_ad3():
# smoketest only
# test if switching between qpbo and ad3 works inside latent svm
# use less perfect initialization
if not get_installed(['qpbo']) or not get_installed(['ad3']):
return
X, Y = generate_crosses(n_samples=20, noise=5, n_crosses=1, total_size=8)
X_test, Y_test = X[10:], Y[10:]
X, Y = X[:10], Y[:10]
crf = LatentGridCRF(n_states_per_label=2,
inference_method='qpbo')
crf.initialize(X, Y)
H_init = crf.init_latent(X, Y)
np.random.seed(0)
mask = np.random.uniform(size=H_init.shape) > .7
H_init[mask] = 2 * (H_init[mask] / 2)
base_ssvm = OneSlackSSVM(crf, inactive_threshold=1e-8, cache_tol=.0001,
inference_cache=50, max_iter=10000,
switch_to=('ad3', {'branch_and_bound': True}),
C=10. ** 3)
clf = LatentSSVM(base_ssvm)
clf.fit(X, Y, H_init=H_init)
assert_equal(clf.model.inference_method[0], 'ad3')
Y_pred = clf.predict(X)
assert_array_equal(np.array(Y_pred), Y)
# test that score is not always 1
assert_true(.98 < clf.score(X_test, Y_test) < 1)
示例2: test_with_crosses_bad_init
# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import predict [as 别名]
def test_with_crosses_bad_init():
# use less perfect initialization
X, Y = toy.generate_crosses(n_samples=10, noise=5, n_crosses=1,
total_size=8)
n_labels = 2
crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=2,
inference_method='lp')
H_init = crf.init_latent(X, Y)
mask = np.random.uniform(size=H_init.shape) > .7
H_init[mask] = 2 * (H_init[mask] / 2)
one_slack = OneSlackSSVM(crf, inactive_threshold=1e-8, cache_tol=.0001,
inference_cache=50, max_iter=10000)
n_slack = StructuredSVM(crf)
subgradient = SubgradientSSVM(crf, max_iter=150, learning_rate=5)
for base_ssvm in [one_slack, n_slack, subgradient]:
base_ssvm.C = 10. ** 3
base_ssvm.n_jobs = -1
clf = LatentSSVM(base_ssvm)
clf.fit(X, Y, H_init=H_init)
Y_pred = clf.predict(X)
assert_array_equal(np.array(Y_pred), Y)
示例3: test_latent_node_boxes_edge_features
# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import predict [as 别名]
def test_latent_node_boxes_edge_features():
# learn the "easy" 2x2 boxes dataset.
# smoketest using a single constant edge feature
X, Y = make_simple_2x2(seed=1, n_samples=40)
latent_crf = EdgeFeatureLatentNodeCRF(n_labels=2, n_hidden_states=2, n_features=1)
base_svm = OneSlackSSVM(latent_crf)
base_svm.C = 10
latent_svm = LatentSSVM(base_svm,
latent_iter=10)
G = [make_grid_edges(x) for x in X]
# make edges for hidden states:
edges = make_edges_2x2()
G = [np.vstack([make_grid_edges(x), edges]) for x in X]
# reshape / flatten x and y
X_flat = [x.reshape(-1, 1) for x in X]
Y_flat = [y.ravel() for y in Y]
#X_ = zip(X_flat, G, [2 * 2 for x in X_flat])
# add edge features
X_ = [(x, g, np.ones((len(g), 1)), 4) for x, g in zip(X_flat, G)]
latent_svm.fit(X_[:20], Y_flat[:20])
assert_array_equal(latent_svm.predict(X_[:20]), Y_flat[:20])
assert_equal(latent_svm.score(X_[:20], Y_flat[:20]), 1)
# test that score is not always 1
assert_true(.98 < latent_svm.score(X_[20:], Y_flat[20:]) < 1)
示例4: test_with_crosses_bad_init
# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import predict [as 别名]
def test_with_crosses_bad_init():
# use less perfect initialization
rnd = np.random.RandomState(0)
X, Y = toy.generate_crosses(n_samples=20, noise=5, n_crosses=1,
total_size=8)
X_test, Y_test = X[10:], Y[10:]
X, Y = X[:10], Y[:10]
n_labels = 2
crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=2)
H_init = crf.init_latent(X, Y)
mask = rnd.uniform(size=H_init.shape) > .7
H_init[mask] = 2 * (H_init[mask] / 2)
one_slack = OneSlackSSVM(crf, inactive_threshold=1e-8, cache_tol=.0001,
inference_cache=50, max_iter=10000)
n_slack = NSlackSSVM(crf)
subgradient = SubgradientSSVM(crf, max_iter=150, learning_rate=.01,
momentum=0)
for base_ssvm in [one_slack, n_slack, subgradient]:
base_ssvm.C = 10. ** 2
clf = LatentSSVM(base_ssvm)
clf.fit(X, Y, H_init=H_init)
Y_pred = clf.predict(X)
assert_array_equal(np.array(Y_pred), Y)
# test that score is not always 1
assert_true(.98 < clf.score(X_test, Y_test) < 1)
示例5: test_latent_node_boxes_standard_latent
# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import predict [as 别名]
def test_latent_node_boxes_standard_latent():
# learn the "easy" 2x2 boxes dataset.
# a 2x2 box is placed randomly in a 4x4 grid
# we add a latent variable for each 2x2 patch
# that should make the model fairly simple
X, Y = make_simple_2x2(seed=1, n_samples=40)
latent_crf = LatentNodeCRF(n_labels=2, n_hidden_states=2, n_features=1)
one_slack = OneSlackSSVM(latent_crf)
n_slack = NSlackSSVM(latent_crf)
subgradient = SubgradientSSVM(latent_crf, max_iter=100)
for base_svm in [one_slack, n_slack, subgradient]:
base_svm.C = 10
latent_svm = LatentSSVM(base_svm,
latent_iter=10)
G = [make_grid_edges(x) for x in X]
# make edges for hidden states:
edges = make_edges_2x2()
G = [np.vstack([make_grid_edges(x), edges]) for x in X]
# reshape / flatten x and y
X_flat = [x.reshape(-1, 1) for x in X]
Y_flat = [y.ravel() for y in Y]
X_ = list(zip(X_flat, G, [2 * 2 for x in X_flat]))
latent_svm.fit(X_[:20], Y_flat[:20])
assert_array_equal(latent_svm.predict(X_[:20]), Y_flat[:20])
assert_equal(latent_svm.score(X_[:20], Y_flat[:20]), 1)
# test that score is not always 1
assert_true(.98 < latent_svm.score(X_[20:], Y_flat[20:]) < 1)
示例6: test_directional_bars
# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import predict [as 别名]
def test_directional_bars():
X, Y = generate_easy(n_samples=10, noise=5, box_size=2, total_size=6, seed=1)
n_labels = 2
crf = LatentDirectionalGridCRF(n_labels=n_labels, n_states_per_label=[1, 4])
clf = LatentSSVM(OneSlackSSVM(model=crf, max_iter=500, C=10.0, inference_cache=50, tol=0.01))
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(np.array(Y_pred), Y)
示例7: main
# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import predict [as 别名]
def main():
X, Y = toy.generate_crosses(n_samples=40, noise=8, n_crosses=2,
total_size=10)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.5)
n_labels = len(np.unique(Y_train))
crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=2,
inference_method='lp')
clf = LatentSSVM(problem=crf, max_iter=50, C=1000., verbose=2,
check_constraints=True, n_jobs=-1, break_on_bad=True,
plot=True)
clf.fit(X_train, Y_train)
for X_, Y_, H, name in [[X_train, Y_train, clf.H_init_, "train"],
[X_test, Y_test, [None] * len(X_test), "test"]]:
Y_pred = clf.predict(X_)
i = 0
loss = 0
for x, y, h_init, y_pred in zip(X_, Y_, H, Y_pred):
loss += np.sum(y != y_pred / crf.n_states_per_label)
fig, ax = plt.subplots(3, 2)
ax[0, 0].matshow(y * crf.n_states_per_label,
vmin=0, vmax=crf.n_states - 1)
ax[0, 0].set_title("ground truth")
unary_params = np.repeat(np.eye(2), 2, axis=1)
pairwise_params = np.zeros(10)
w_unaries_only = np.hstack([unary_params.ravel(),
pairwise_params.ravel()])
unary_pred = crf.inference(x, w_unaries_only)
ax[0, 1].matshow(unary_pred, vmin=0, vmax=crf.n_states - 1)
ax[0, 1].set_title("unaries only")
if h_init is None:
ax[1, 0].set_visible(False)
else:
ax[1, 0].matshow(h_init, vmin=0, vmax=crf.n_states - 1)
ax[1, 0].set_title("latent initial")
ax[1, 1].matshow(crf.latent(x, y, clf.w),
vmin=0, vmax=crf.n_states - 1)
ax[1, 1].set_title("latent final")
ax[2, 0].matshow(y_pred, vmin=0, vmax=crf.n_states - 1)
ax[2, 0].set_title("prediction")
ax[2, 1].matshow((y_pred // crf.n_states_per_label)
* crf.n_states_per_label,
vmin=0, vmax=crf.n_states - 1)
ax[2, 1].set_title("prediction")
for a in ax.ravel():
a.set_xticks(())
a.set_yticks(())
fig.savefig("data_%s_%03d.png" % (name, i), bbox_inches="tight")
i += 1
print("loss %s set: %f" % (name, loss))
print(clf.w)
示例8: main
# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import predict [as 别名]
def main():
# get some data
X, Y = toy.generate_bars(n_samples=40, noise=10, total_size=10, separate_labels=False)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.5)
# train a latent grid crf
n_labels = len(np.unique(Y_train))
crf = LatentDirectionalGridCRF(n_labels=n_labels, n_states_per_label=[1, 6], inference_method="lp")
clf = LatentSSVM(
problem=crf,
max_iter=50,
C=10.0,
verbose=2,
check_constraints=True,
n_jobs=-1,
break_on_bad=False,
tol=-10,
base_svm="1-slack",
)
clf.fit(X_train, Y_train)
# the rest is plotting
for X_, Y_, H, name in [[X_train, Y_train, clf.H_init_, "train"], [X_test, Y_test, [None] * len(X_test), "test"]]:
Y_pred = clf.predict(X_)
i = 0
loss = 0
for x, y, h_init, y_pred in zip(X_, Y_, H, Y_pred):
loss += np.sum(y != y_pred)
fig, ax = plt.subplots(3, 2)
ax[0, 0].matshow(y, vmin=0, vmax=crf.n_labels - 1)
ax[0, 0].set_title("ground truth")
unary_pred = np.argmax(x, axis=-1)
ax[0, 1].matshow(unary_pred, vmin=0, vmax=crf.n_labels - 1)
ax[0, 1].set_title("unaries only")
if h_init is None:
ax[1, 0].set_visible(False)
else:
ax[1, 0].matshow(h_init, vmin=0, vmax=crf.n_states - 1)
ax[1, 0].set_title("latent initial")
ax[1, 1].matshow(crf.latent(x, y, clf.w), vmin=0, vmax=crf.n_states - 1)
ax[1, 1].set_title("latent final")
ax[2, 0].matshow(crf.inference(x, clf.w), vmin=0, vmax=crf.n_states - 1)
ax[2, 0].set_title("prediction")
ax[2, 1].matshow(y_pred, vmin=0, vmax=crf.n_labels - 1)
ax[2, 1].set_title("prediction")
for a in ax.ravel():
a.set_xticks(())
a.set_yticks(())
fig.savefig("data_%s_%03d.png" % (name, i), bbox_inches="tight")
i += 1
print("loss %s set: %f" % (name, loss))
示例9: test_with_crosses_base_svms
# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import predict [as 别名]
def test_with_crosses_base_svms():
# very simple dataset. k-means init is perfect
for base_svm in ['1-slack', 'n-slack', 'subgradient']:
X, Y = toy.generate_crosses(n_samples=10, noise=5, n_crosses=1,
total_size=8)
n_labels = 2
crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=[1, 2],
inference_method='lp')
clf = LatentSSVM(problem=crf, max_iter=150, C=10. ** 5, verbose=2,
check_constraints=True, n_jobs=-1, break_on_bad=True,
base_svm=base_svm, learning_rate=5)
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(np.array(Y_pred), Y)
示例10: test_switch_to_ad3
# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import predict [as 别名]
def test_switch_to_ad3():
# smoketest only
# test if switching between qpbo and ad3 works inside latent svm
# use less perfect initialization
if not get_installed(["qpbo"]) or not get_installed(["ad3"]):
return
X, Y = generate_crosses(n_samples=20, noise=5, n_crosses=1, total_size=8)
X_test, Y_test = X[10:], Y[10:]
X, Y = X[:10], Y[:10]
crf = LatentGridCRF(n_states_per_label=2, inference_method="qpbo")
crf.initialize(X, Y)
H_init = crf.init_latent(X, Y)
np.random.seed(0)
mask = np.random.uniform(size=H_init.shape) > 0.7
H_init[mask] = 2 * (H_init[mask] / 2)
base_ssvm = OneSlackSSVM(
crf,
inactive_threshold=1e-8,
cache_tol=0.0001,
inference_cache=50,
max_iter=10000,
switch_to=("ad3", {"branch_and_bound": True}),
C=10.0 ** 3,
)
clf = LatentSSVM(base_ssvm)
# evil hackery to get rid of ad3 output
try:
devnull = open("/dev/null", "w")
oldstdout_fno = os.dup(sys.stdout.fileno())
os.dup2(devnull.fileno(), 1)
replaced_stdout = True
except:
replaced_stdout = False
clf.fit(X, Y, H_init=H_init)
if replaced_stdout:
os.dup2(oldstdout_fno, 1)
assert_equal(clf.model.inference_method[0], "ad3")
Y_pred = clf.predict(X)
assert_array_equal(np.array(Y_pred), Y)
# test that score is not always 1
assert_true(0.98 < clf.score(X_test, Y_test) < 1)
示例11: test_directional_bars
# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import predict [as 别名]
def test_directional_bars():
for inference_method in ['lp']:
X, Y = toy.generate_easy(n_samples=10, noise=5, box_size=2,
total_size=6, seed=1)
n_labels = 2
crf = LatentDirectionalGridCRF(n_labels=n_labels,
n_states_per_label=[1, 4],
inference_method=inference_method)
clf = LatentSSVM(problem=crf, max_iter=500, C=10. ** 5, verbose=2,
check_constraints=True, n_jobs=-1, break_on_bad=True,
base_svm='1-slack')
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(np.array(Y_pred), Y)
示例12: test_with_crosses_perfect_init
# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import predict [as 别名]
def test_with_crosses_perfect_init():
# very simple dataset. k-means init is perfect
for n_states_per_label in [2, [1, 2]]:
# test with 2 states for both foreground and background,
# as well as with single background state
X, Y = generate_crosses(n_samples=10, noise=5, n_crosses=1, total_size=8)
n_labels = 2
crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=n_states_per_label)
clf = LatentSSVM(
OneSlackSSVM(model=crf, max_iter=500, C=10, check_constraints=False, break_on_bad=False, inference_cache=50)
)
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(np.array(Y_pred), Y)
assert_equal(clf.score(X, Y), 1)
示例13: test_with_crosses_bad_init
# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import predict [as 别名]
def test_with_crosses_bad_init():
# use less perfect initialization
X, Y = toy.generate_crosses(n_samples=10, noise=5, n_crosses=1,
total_size=8)
n_labels = 2
crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=2,
inference_method='lp')
clf = LatentSSVM(problem=crf, max_iter=50, C=10. ** 3, verbose=2,
check_constraints=True, n_jobs=-1, break_on_bad=True)
H_init = crf.init_latent(X, Y)
mask = np.random.uniform(size=H_init.shape) > .7
H_init[mask] = 2 * (H_init[mask] / 2)
clf.fit(X, Y, H_init=H_init)
Y_pred = clf.predict(X)
assert_array_equal(np.array(Y_pred), Y)
示例14: test_with_crosses_base_svms
# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import predict [as 别名]
def test_with_crosses_base_svms():
# very simple dataset. k-means init is perfect
n_labels = 2
crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=[1, 2])
one_slack = OneSlackSSVM(crf, inference_cache=50)
n_slack = NSlackSSVM(crf)
subgradient = SubgradientSSVM(crf, max_iter=400, learning_rate=0.01, decay_exponent=0, decay_t0=10)
X, Y = generate_crosses(n_samples=10, noise=5, n_crosses=1, total_size=8)
for base_ssvm in [one_slack, n_slack, subgradient]:
base_ssvm.C = 100.0
clf = LatentSSVM(base_ssvm=base_ssvm)
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(np.array(Y_pred), Y)
assert_equal(clf.score(X, Y), 1)
示例15: test_with_crosses_base_svms
# 需要导入模块: from pystruct.learners import LatentSSVM [as 别名]
# 或者: from pystruct.learners.LatentSSVM import predict [as 别名]
def test_with_crosses_base_svms():
# very simple dataset. k-means init is perfect
n_labels = 2
crf = LatentGridCRF(n_labels=n_labels, n_states_per_label=[1, 2],
inference_method='lp')
one_slack = OneSlackSSVM(crf)
n_slack = StructuredSVM(crf)
subgradient = SubgradientSSVM(crf, max_iter=150, learning_rate=5)
for base_ssvm in [one_slack, n_slack, subgradient]:
base_ssvm.C = 10. ** 5
base_ssvm.n_jobs = -1
X, Y = toy.generate_crosses(n_samples=10, noise=5, n_crosses=1,
total_size=8)
clf = LatentSSVM(base_ssvm=base_ssvm)
clf.fit(X, Y)
Y_pred = clf.predict(X)
assert_array_equal(np.array(Y_pred), Y)