当前位置: 首页>>代码示例>>Python>>正文


Python StandardScaler.fit方法代码示例

本文整理汇总了Python中pyspark.mllib.feature.StandardScaler.fit方法的典型用法代码示例。如果您正苦于以下问题:Python StandardScaler.fit方法的具体用法?Python StandardScaler.fit怎么用?Python StandardScaler.fit使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pyspark.mllib.feature.StandardScaler的用法示例。


在下文中一共展示了StandardScaler.fit方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: fit

# 需要导入模块: from pyspark.mllib.feature import StandardScaler [as 别名]
# 或者: from pyspark.mllib.feature.StandardScaler import fit [as 别名]
    def fit(self, dataset):
        """
        Computa la media y desvio estándar de un conjunto de datos, las cuales se usarán para estandarizar datos.

        :param dataset: pyspark.rdd.RDD o numpy.ndarray o :class:`.LabeledDataSet`

        """
        if isinstance(dataset, LabeledDataSet):
            dataset = dataset.features
        if isinstance(dataset, pyspark.rdd.RDD):
            standarizer = StdSc(self.flag_mean, self.flag_std)
            self.model = standarizer.fit(dataset)
        else:
            if type(dataset) is not np.ndarray:
                dataset = np.array(dataset)
            if self.flag_mean is True:
                self.mean = dataset.mean(axis=0)
            if self.flag_std is True:
                self.std = dataset.std(axis=0, ddof=1)
        return
开发者ID:leferrad,项目名称:learninspy,代码行数:22,代码来源:data.py

示例2: extract_features

# 需要导入模块: from pyspark.mllib.feature import StandardScaler [as 别名]
# 或者: from pyspark.mllib.feature.StandardScaler import fit [as 别名]
    def extract_features(self, feat='tfidf', **kwargs):
        """
        Converts each subtitle into its TF/TFIDF representation.
        Normalizes if necessary.

        Parameters
        --------
        Feat: 'tf' or 'tfidf'.
        kwargs: num_features, minDocFreq, or other arguments to be passed
        to the MLLib objects.

        Returns
        --------
        RDD of features with key.
        """

        # transform BOW into TF vectors
        num_features = kwargs.get('num_features', 10000)
        htf = HashingTF(num_features)
        feat_rdd = self.RDD.mapValues(htf.transform).cache()

        # transform TF vectors into IDF vectors
        if feat == 'tfidf':
            keys, tf_vecs = feat_rdd.keys(), feat_rdd.values()
            minDocFreq = kwargs.get('minDocFreq', 2)
            idf = IDF(minDocFreq=minDocFreq)
            idf_model = idf.fit(tf_vecs)
            idf_rdd = idf_model.transform(tf_vecs.map(lambda vec: vec.toArray()))
            feat_rdd = keys.zip(idf_rdd)

        if self.model_type == 'log_reg':
            normalizer = StandardScaler(withMean=True, withStd=True)
            keys, vecs = feat_rdd.keys(), feat_rdd.values()
            norm_model = normalizer.fit(vecs)
            norm_rdd = norm_model.transform(vecs.map(lambda vec: vec.toArray()))
            feat_rdd = keys.zip(norm_rdd)

        return feat_rdd
开发者ID:Nathx,项目名称:parental_advisory_ml,代码行数:40,代码来源:spark_model.py

示例3: StandardScaler

# 需要导入模块: from pyspark.mllib.feature import StandardScaler [as 别名]
# 或者: from pyspark.mllib.feature.StandardScaler import fit [as 别名]
df.show()
pdf = df.toPandas

table = pd.pivot_table(pdf, index=['datetime'], columns=['data:temp'], aggfunc=numpy.mean)
print table.values
# For Testing
#df.show()
#df.describe(['data:temp', 'datetime', 'sensorName', 'data:humidity']).show()
df = df.select('data:temp', 'data:humidity', 'data:chlPPM', 'data:co2', 'data:flo', 'data:psi')
#df.show()
temp = df.map(lambda line:LabeledPoint(line[0], [line[1:]]))

# Scale the data
features = df.map(lambda row: row[1:])
standardizer = StandardScaler()
model = standardizer.fit(features)
features_transform = model.transform(features)
print features_transform.take(5)

lab = df.map(lambda row: row[0])

transformedData = lab.zip(features_transform)

transformedData = transformedData.map(lambda row: LabeledPoint(row[0], [row[1]]))

trainingData, testingData = transformedData.randomSplit([.8, .2], seed=1234)

lr = LinearRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8)

linearModel = LinearRegressionWithSGD.train(trainingData, 1000, .0002)
print linearModel.weights
开发者ID:stevekludt,项目名称:sparkModels,代码行数:33,代码来源:HBaseRead.py

示例4: OrderedDict

# 需要导入模块: from pyspark.mllib.feature import StandardScaler [as 别名]
# 或者: from pyspark.mllib.feature.StandardScaler import fit [as 别名]
    sorted_labels = OrderedDict(sorted(label_counts.items(), key=lambda t: t[1], reverse=True))
    for label, count in sorted_labels.items():
        print label, count

    # Prepare data for clustering input
    # the data contains non-numeric features, we want to exclude them since
    # k-means works with numeric features. These are the first three and the last
    # column in each data row
    print "Parsing dataset..."
    parsed_data = raw_data.map(parse_interaction)
    parsed_data_values = parsed_data.values().cache()

    # Standardize data
    print "Standardizing data..."
    standardizer = StandardScaler(True, True)
    standardizer_model = standardizer.fit(parsed_data_values)
    standardized_data_values = standardizer_model.transform(parsed_data_values)

    # Evaluate values of k from 5 to 40
    print "Calculating total in within cluster distance for different k values (10 to %(max_k)d):" % {"max_k": max_k}
    scores = map(lambda k: clustering_score(standardized_data_values, k), range(10,max_k+1,10))

    # Obtain min score k
    min_k = min(scores, key=lambda x: x[2])[0]
    print "Best k value is %(best_k)d" % {"best_k": min_k}

    # Use the best model to assign a cluster to each datum
    # We use here standardized data - it is more appropriate for exploratory purposes
    print "Obtaining clustering result sample for k=%(min_k)d..." % {"min_k": min_k}
    best_model = min(scores, key=lambda x: x[2])[1]
    cluster_assignments_sample = standardized_data_values.map(lambda datum: str(best_model.predict(datum))+","+",".join(map(str,datum))).sample(False,0.05)
开发者ID:4sp1r3,项目名称:kdd-cup-99-spark,代码行数:33,代码来源:KDDCup99.py

示例5: SparkContext

# 需要导入模块: from pyspark.mllib.feature import StandardScaler [as 别名]
# 或者: from pyspark.mllib.feature.StandardScaler import fit [as 别名]
#Standardizes features by removing the mean and scaling to unit variance using column summary statistics on the samples in the training set.
from pyspark.mllib.feature import Normalizer
from pyspark.mllib.linalg import Vectors
from pyspark import SparkContext
from pyspark.mllib.feature import StandardScaler

sc = SparkContext()

vs = [Vectors.dense([-2.0, 2.3, 0]), Vectors.dense([3.8, 0.0, 1.9])]

dataset = sc.parallelize(vs)

#all false, do nothing.
standardizer = StandardScaler(False, False)
model = standardizer.fit(dataset)
result = model.transform(dataset)
for r in result.collect(): print r

print("\n")

#deducts the mean
standardizer = StandardScaler(True, False)
model = standardizer.fit(dataset)
result = model.transform(dataset)
for r in result.collect(): print r

print("\n")

#divides the length of vector
standardizer = StandardScaler(False, True)
开发者ID:aviyashchin,项目名称:CollabFiltering-Netflix-PySpark,代码行数:32,代码来源:classification.py


注:本文中的pyspark.mllib.feature.StandardScaler.fit方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。