当前位置: 首页>>代码示例>>Python>>正文


Python Solver.run方法代码示例

本文整理汇总了Python中pysb.integrate.Solver.run方法的典型用法代码示例。如果您正苦于以下问题:Python Solver.run方法的具体用法?Python Solver.run怎么用?Python Solver.run使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pysb.integrate.Solver的用法示例。


在下文中一共展示了Solver.run方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_lipo_sites_builder

# 需要导入模块: from pysb.integrate import Solver [as 别名]
# 或者: from pysb.integrate.Solver import run [as 别名]
def test_lipo_sites_builder():
    """lipo_sites_builder builds and runs without error."""
    lsb = lipo_sites.Builder()
    lsb.translocate_Bax()
    t = np.linspace(0, 100)
    sol = Solver(lsb.model, t)
    sol.run()
开发者ID:johnbachman,项目名称:tBidBaxLipo,代码行数:9,代码来源:test_models.py

示例2: plot_func_single

# 需要导入模块: from pysb.integrate import Solver [as 别名]
# 或者: from pysb.integrate.Solver import run [as 别名]
    def plot_func_single(self, x, data_ix, ax=None, alpha=1.0):
        x = 10 ** x

        s = Solver(self.builder.model, self.time)
        # Set the parameters appropriately for the simulation:
        # Iterate over the globally fit parameters
        for g_ix, p in enumerate(self.builder.global_params):
            p.value = x[g_ix]
        # Iterate over the locally fit parameters
        for l_ix, p in enumerate(self.builder.local_params):
            ix_offset = len(self.builder.global_params) + \
                        data_ix * len(self.builder.local_params)
            p.value = x[l_ix + ix_offset]
        # Now fill in the initial condition parameters
        for p_name, values in self.params.iteritems():
            p = self.builder.model.parameters[p_name]
            p.value = values[data_ix]
        # Now run the simulation
        s.run()
        # Plot the observable
        if ax is None:
            ax = plt.gca()
        if self.use_expr:
            ax.plot(self.time, s.yexpr[self.obs_name], color='r',
                     alpha=alpha)
        else:
            ax.plot(self.time, s.yobs[self.obs_name], color='r',
                     alpha=alpha)
开发者ID:johnbachman,项目名称:tBidBaxLipo,代码行数:30,代码来源:emcee_fit.py

示例3: test_one_cpt_lipo_sites_comparison_tBid

# 需要导入模块: from pysb.integrate import Solver [as 别名]
# 或者: from pysb.integrate.Solver import run [as 别名]
def test_one_cpt_lipo_sites_comparison_tBid():
    """Simulation of one_cpt and the lipo_sites model with tBid_0 numbers
    of sites per liposome should give the same result."""
    sites_per_liposome_list = [10., 1000.]
    for test_ix, sites_per_liposome in enumerate(sites_per_liposome_list):
        params_dict = {'tBid_0': 10., 'sites_per_liposome': sites_per_liposome}
        ocb = one_cpt.Builder(params_dict=params_dict)
        lsb = lipo_sites.Builder(params_dict=params_dict)
        t = np.linspace(0, 100, 1000)
        y_list = []
        for builder in (ocb, lsb):
            builder.translocate_tBid()
            sol = Solver(builder.model, t)
            sol.run()
            y_list.append(sol.yobs['mtBid'])

        if test_ix == 0:
            ok_(not np.allclose(y_list[0], y_list[1], atol=1.5e-3),
                'one_cpt and lipo_sites simulations should be different '
                'under these conditions.')
        elif test_ix == 1:
            # The two arrays have a maximal absolute difference of 1.5e-3
            ok_(np.allclose(y_list[0], y_list[1], atol=1.5e-3),
                'one_cpt and lipo_sites simulations should be approximately '
                'equal under these conditions.')
        else:
            raise Exception('Unexpected test index.')
开发者ID:johnbachman,项目名称:tBidBaxLipo,代码行数:29,代码来源:test_models.py

示例4: run_query

# 需要导入模块: from pysb.integrate import Solver [as 别名]
# 或者: from pysb.integrate.Solver import run [as 别名]
def run_query(model, query):
    m = re.match('Is the amount of (.+) ([^ ]+) in time?', query)
    target_str = m.groups()[0]
    pattern_str = m.groups()[1]

    ts = numpy.linspace(0, 100, 10)
    solver = Solver(model, ts)
    solver.run()

    if target_str == 'A-B complex':
        target = 'AB'

    if target_str == 'A':
        target = 'A'

    for i, a in enumerate(solver.yobs[target]):
        solver.yobs[target][i] = 1 if a > 50 else 0

    if pattern_str == 'sustained':
        fstr = sustained_formula(target)
    elif pattern_str == 'transient':
        fstr = transient_formula(target)
    elif pattern_str == 'unchanged':
        fstr = noact_formula(target)

    print '\n\n'
    print '-----------'
    print query
    print 'LTL formula: %s' % fstr
    mc = ModelChecker(fstr, solver.yobs)
    print solver.yobs[target]
    print 'Result:', mc.truth
    print '-----------'
开发者ID:sorgerlab,项目名称:bioagents,代码行数:35,代码来源:run_tra.py

示例5: test_integrate_with_expression

# 需要导入模块: from pysb.integrate import Solver [as 别名]
# 或者: from pysb.integrate.Solver import run [as 别名]
def test_integrate_with_expression():
    """Ensure a model with Expressions simulates."""

    Monomer('s1')
    Monomer('s9')
    Monomer('s16')
    Monomer('s20')

    # Parameters should be able to contain s(\d+) without error
    Parameter('ks0',2e-5)
    Parameter('ka20', 1e5)

    Initial(s9(), Parameter('s9_0', 10000))

    Observable('s1_obs', s1())
    Observable('s9_obs', s9())
    Observable('s16_obs', s16())
    Observable('s20_obs', s20())

    Expression('keff', (ks0*ka20)/(ka20+s9_obs))

    Rule('R1', None >> s16(), ks0)
    Rule('R2', None >> s20(), ks0)
    Rule('R3', s16() + s20() >> s16() + s1(), keff)

    time = np.linspace(0, 40)

    solver = Solver(model, time)
    solver.run()

    assert solver.yexpr_view.shape == (len(time),
                                       len(model.expressions_dynamic()))
    assert solver.yobs_view.shape == (len(time), len(model.observables))
开发者ID:LoLab-VU,项目名称:pysb,代码行数:35,代码来源:test_integrate.py

示例6: plot_liposome_titration_insertion_kinetics

# 需要导入模块: from pysb.integrate import Solver [as 别名]
# 或者: from pysb.integrate.Solver import run [as 别名]
def plot_liposome_titration_insertion_kinetics(model):
    """Plot the insertion kinetics of Bax over a liposome titration."""
    lipo_concs = np.logspace(-2, 2, 40)
    t = np.linspace(0, 12000, 100)

    fmax_list = []
    k_list = []

    for lipo_conc in lipo_concs:
        model.parameters['Vesicles_0'].value = lipo_conc

        # Get the SS mBax value
        #b_trans.model.parameters['Vesicles_0'].value = lipo_conc
        #s = Solver(b_trans.model, t)
        #s.run()
        #max_mBax = s.yobs['mBax'][-1]

        # Get the iBax curve
        s = Solver(model, t)
        s.run()
        iBax = s.yobs['iBax'] / model.parameters['Bax_0'].value
        plt.plot(t, iBax, 'r')

        # Fit to single exponential
        fmax = fitting.Parameter(0.9)
        k = fitting.Parameter(0.01)
        def single_exp(t):
            return (fmax() * (1 - np.exp(-k()*t)))
        fitting.fit(single_exp, [fmax, k], iBax, t)
        plt.plot(t, single_exp(t), 'b')

        fmax_list.append(fmax())
        k_list.append(k())

    plt.title('Inserted Bax with liposome titration')
    plt.xlabel('Time')
    plt.ylabel('Fraction of inserted Bax')
    plt.show()

    # Make plots of k and fmax as a function of lipo concentration
    fmax_list = np.array(fmax_list)
    k_list = np.array(k_list)

    # k
    plt.figure()
    plt.plot(lipo_concs, k_list, 'ro')
    plt.xlabel('Liposomes (nM)')
    plt.ylabel('$k$')
    plt.title("$k$ vs. Liposome conc")
    plt.ylim([0, 0.0020])
    plt.show()

    # Fmax 
    plt.figure()
    plt.plot(lipo_concs, fmax_list, 'ro')
    plt.xlabel('Liposomes (nM)')
    plt.ylabel('$F_{max}$')
    plt.title("$F_{max}$ vs. Liposome conc")
    plt.show()
开发者ID:johnbachman,项目名称:tBidBaxLipo,代码行数:61,代码来源:pore_plots.py

示例7: lipo_titration

# 需要导入模块: from pysb.integrate import Solver [as 别名]
# 或者: from pysb.integrate.Solver import run [as 别名]
def lipo_titration(builder, ax):
    t = np.linspace(0, tmax, 1e3)
    sol = Solver(bd.model, t)
    lipo_concs = np.logspace(-1, 1.5, 7)
    for i, lipo_conc in enumerate(lipo_concs):
        bd['Vesicles_0'].value = lipo_conc
        sol.run()
        ax.plot(t, sol.yexpr['NBD'], color=color_list[i])
开发者ID:johnbachman,项目名称:tBidBaxLipo,代码行数:10,代码来源:model_predictions_lipo_titration.py

示例8: test_earm_integration

# 需要导入模块: from pysb.integrate import Solver [as 别名]
# 或者: from pysb.integrate.Solver import run [as 别名]
def test_earm_integration():
    t = np.linspace(0, 1e4, 1000)
    # Run with and without inline
    Solver._use_inline = False
    sol = Solver(earm_1_0.model, t, use_analytic_jacobian=True)
    sol.run()
    Solver._use_inline = True
    sol = Solver(earm_1_0.model, t, use_analytic_jacobian=True)
    sol.run()
开发者ID:geenaildefonso,项目名称:pysb,代码行数:11,代码来源:test_integrate.py

示例9: check_runtime

# 需要导入模块: from pysb.integrate import Solver [as 别名]
# 或者: from pysb.integrate.Solver import run [as 别名]
def check_runtime(model, tspan, iterations, use_inline, use_analytic_jacobian):
    Solver._use_inline = use_inline
    sol = Solver(model, tspan, use_analytic_jacobian=use_analytic_jacobian)
    start_time = timeit.default_timer()
    for i in range(iterations):
        sol.run()
    elapsed = timeit.default_timer() - start_time
    print "use_inline=%s, use_analytic_jacobian=%s, %d iterations" % \
          (use_inline, use_analytic_jacobian, iterations)
    print "Time: %f sec\n" % elapsed
开发者ID:geenaildefonso,项目名称:pysb,代码行数:12,代码来源:jacobian_runtimes.py

示例10: test_ic_expression_with_one_parameter

# 需要导入模块: from pysb.integrate import Solver [as 别名]
# 或者: from pysb.integrate.Solver import run [as 别名]
def test_ic_expression_with_one_parameter():
    Monomer('A')
    Parameter('k1', 1)
    Expression('e1', k1)
    Rule('A_deg', A() >> None, k1)
    Initial(A(), e1)
    generate_equations(model)
    t = np.linspace(0, 1000, 100)
    sol = Solver(model, t, use_analytic_jacobian=True)
    sol.run()
开发者ID:Adityaparmar2903,项目名称:pysb,代码行数:12,代码来源:test_expressions.py

示例11: test_robertson_integration

# 需要导入模块: from pysb.integrate import Solver [as 别名]
# 或者: from pysb.integrate.Solver import run [as 别名]
def test_robertson_integration():
    t = np.linspace(0, 100)
    # Run with and without inline
    Solver._use_inline = False
    sol = Solver(robertson.model, t, use_analytic_jacobian=True)
    sol.run()
    assert sol.y.shape[0] == t.shape[0]
    # Run with and without inline
    Solver._use_inline = True
    sol = Solver(robertson.model, t, use_analytic_jacobian=True)
    sol.run()
开发者ID:geenaildefonso,项目名称:pysb,代码行数:13,代码来源:test_integrate.py

示例12: test_2conf_irrev_formula

# 需要导入模块: from pysb.integrate import Solver [as 别名]
# 或者: from pysb.integrate.Solver import run [as 别名]
def test_2conf_irrev_formula():
    params_dict = {'c1_scaling': 5}
    bd = Builder(params_dict=params_dict)
    bd.build_model_multiconf(2, 1., reversible=False, normalized_data=True)
    t = np.linspace(0, 4000, 100)
    sol = Solver(bd.model, t)
    sol.run()
    nbd_sol = sol.yexpr['NBD']
    nbd_func = bd.obs_func(t)
    ok_(np.allclose(nbd_sol, nbd_func),
        'Integrated NBD does not match closed form NBD for 2conf model')
开发者ID:johnbachman,项目名称:tBidBaxLipo,代码行数:13,代码来源:test_multiconf_formula.py

示例13: simulate_vemurafenib_treatment

# 需要导入模块: from pysb.integrate import Solver [as 别名]
# 或者: from pysb.integrate.Solver import run [as 别名]
def simulate_vemurafenib_treatment(model, ts, y0):
    # New initial conditions for simulation post event
    y_init = y0
    y_init[model.observables['Vem_free'].species[0]] = 2e5

    # Continue model simulation with y_init as new initial condition
    solver = Solver(model, ts)
    solver.run(y0=y_init)

    # Concatenate the two simulations
    return solver.yobs, solver.y
开发者ID:johnbachman,项目名称:indra,代码行数:13,代码来源:run_model.py

示例14: test_earm_integration

# 需要导入模块: from pysb.integrate import Solver [as 别名]
# 或者: from pysb.integrate.Solver import run [as 别名]
def test_earm_integration():
    """Ensure earm_1_0 model simulates."""
    t = np.linspace(0, 1e3)
    # Run with or without inline
    sol = Solver(earm_1_0.model, t)
    sol.run()
    if Solver._use_inline:
        # Also run without inline
        Solver._use_inline = False
        sol = Solver(earm_1_0.model, t)
        sol.run()
        Solver._use_inline = True
开发者ID:LoLab-VU,项目名称:pysb,代码行数:14,代码来源:test_integrate.py

示例15: plot_bax_titration_insertion_kinetics

# 需要导入模块: from pysb.integrate import Solver [as 别名]
# 或者: from pysb.integrate.Solver import run [as 别名]
def plot_bax_titration_insertion_kinetics(model):
    """Plot the insertion kinetics of Bax over a Bax titration."""
    bax_concs = np.logspace(-1, 3, 40)
    t = np.linspace(0, 12000, 100)

    fmax_list = []
    k_list = []

    for bax_conc in bax_concs:
        model.parameters['Bax_0'].value = bax_conc

        # Get the iBax curve
        s = Solver(model, t)
        s.run()
        iBax = s.yobs['iBax'] / model.parameters['Bax_0'].value
        plt.plot(t, iBax, 'r')

        # Fit to single exponential
        fmax = fitting.Parameter(0.9)
        k = fitting.Parameter(0.01)
        def single_exp(t):
            return (fmax() * (1 - np.exp(-k()*t)))
        fitting.fit(single_exp, [fmax, k], iBax, t)
        plt.plot(t, single_exp(t), 'b')

        fmax_list.append(fmax())
        k_list.append(k())

    plt.title('Inserted Bax with Bax titration')
    plt.xlabel('Time')
    plt.ylabel('Fraction of inserted Bax')
    plt.show()

    # Make plots of k and fmax as a function of lipo concentration
    fmax_list = np.array(fmax_list)
    k_list = np.array(k_list)

    # k
    plt.figure()
    plt.plot(bax_concs, k_list, 'ro')
    plt.xlabel('Bax (nM)')
    plt.ylabel('$k$')
    plt.title("$k$ vs. Bax conc")
    plt.show()

    # Fmax 
    plt.figure()
    plt.plot(bax_concs, fmax_list, 'ro')
    plt.xlabel('Bax (nM)')
    plt.ylabel('$F_{max}$')
    plt.title("$F_{max}$ vs. Bax conc")
    plt.show()
开发者ID:johnbachman,项目名称:tBidBaxLipo,代码行数:54,代码来源:pore_plots.py


注:本文中的pysb.integrate.Solver.run方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。