当前位置: 首页>>代码示例>>Python>>正文


Python FeedForwardNetwork.convertToFastNetwork方法代码示例

本文整理汇总了Python中pybrain.structure.FeedForwardNetwork.convertToFastNetwork方法的典型用法代码示例。如果您正苦于以下问题:Python FeedForwardNetwork.convertToFastNetwork方法的具体用法?Python FeedForwardNetwork.convertToFastNetwork怎么用?Python FeedForwardNetwork.convertToFastNetwork使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pybrain.structure.FeedForwardNetwork的用法示例。


在下文中一共展示了FeedForwardNetwork.convertToFastNetwork方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: trained_cat_dog_ANN

# 需要导入模块: from pybrain.structure import FeedForwardNetwork [as 别名]
# 或者: from pybrain.structure.FeedForwardNetwork import convertToFastNetwork [as 别名]
def trained_cat_dog_ANN():
    n = FeedForwardNetwork()
    d = get_cat_dog_trainset()
    input_size = d.getDimension('input')
    n.addInputModule(LinearLayer(input_size, name='in'))
    n.addModule(SigmoidLayer(input_size+1500, name='hidden'))
    n.addOutputModule(LinearLayer(2, name='out'))
    n.addConnection(FullConnection(n['in'], n['hidden'], name='c1'))
    n.addConnection(FullConnection(n['hidden'], n['out'], name='c2'))
    n.sortModules()
    n.convertToFastNetwork()
    print 'successful converted to fast network'
    t = BackpropTrainer(n, d, learningrate=0.0001)#, momentum=0.75)

    count = 0
    while True:
        globErr = t.train()
        print globErr
        count += 1
        if globErr < 0.01:
            break
        if count == 30:
            break


    exportCatDogANN(n)
    return n
开发者ID:DianaShatunova,项目名称:NEUCOGAR,代码行数:29,代码来源:main.py

示例2: testMdlstm

# 需要导入模块: from pybrain.structure import FeedForwardNetwork [as 别名]
# 或者: from pybrain.structure.FeedForwardNetwork import convertToFastNetwork [as 别名]
 def testMdlstm(self):
     net = FeedForwardNetwork()
     net.addInputModule(LinearLayer(1, name='in'))
     net.addModule(MDLSTMLayer(1, 1, name='hidden'))
     net.addOutputModule(LinearLayer(1, name='out'))
     net.addConnection(FullConnection(net['in'], net['hidden']))
     net.addConnection(FullConnection(net['hidden'], net['out']))
     net.sortModules()
     self.equivalence_feed_forward(net, net.convertToFastNetwork())
开发者ID:HKou,项目名称:pybrain,代码行数:11,代码来源:test_pybrainbridge.py

示例3: __init__

# 需要导入模块: from pybrain.structure import FeedForwardNetwork [as 别名]
# 或者: from pybrain.structure.FeedForwardNetwork import convertToFastNetwork [as 别名]
    def __init__(self, index, name, params):
        self.name = name
        self.index = index
        self.liste = []#ClassificationDataSet(17, 1, nb_classes=4)        
        self.status_good = True

        self.number_of_moves = 0
        self.number_of_sound_moves = 0

        n = FeedForwardNetwork()
        
        self.inLayer = LinearLayer(17)
        self.hiddenLayer = SigmoidLayer(5)
        self.outLayer = LinearLayer(4)
     
        
        n.addInputModule(self.inLayer)
        n.addModule(self.hiddenLayer)
        n.addOutputModule(self.outLayer)
        
        from pybrain.structure import FullConnection
        in_to_hidden = FullConnection(self.inLayer, self.hiddenLayer)
        hidden_to_out = FullConnection(self.hiddenLayer, self.outLayer)
        
        n.addConnection(in_to_hidden)
        n.addConnection(hidden_to_out)
        
        n.sortModules()
        
        for j, i in enumerate(params[0]):
            n.connections[self.hiddenLayer][0].params[j] = i  
            
        for j, i in enumerate(params[1]):
            n.connections[self.inLayer][0].params[j] = i

        n.convertToFastNetwork()

        self.n = n        
        self.n.convertToFastNetwork()
开发者ID:frederikhagel,项目名称:AI2-code,代码行数:41,代码来源:developing_ai_test.py

示例4: __init__

# 需要导入模块: from pybrain.structure import FeedForwardNetwork [as 别名]
# 或者: from pybrain.structure.FeedForwardNetwork import convertToFastNetwork [as 别名]
   def __init__(self, index, name, params):
        self.name = name
        self.index = index
        
        self.status_good = True

        n = FeedForwardNetwork()
        
        self.inLayer = LinearLayer(17)
        self.hiddenLayer = SigmoidLayer(5)
        self.outLayer = LinearLayer(4)
     
        
        n.addInputModule(self.inLayer)
        n.addModule(self.hiddenLayer)
        n.addOutputModule(self.outLayer)
        
        from pybrain.structure import FullConnection
        in_to_hidden = FullConnection(self.inLayer, self.hiddenLayer)
        hidden_to_out = FullConnection(self.hiddenLayer, self.outLayer)
        
        n.addConnection(in_to_hidden)
        n.addConnection(hidden_to_out)
        
        n.sortModules()
        
        for j, i in enumerate(params[0]):
            n.connections[self.hiddenLayer][0].params[j] = i  
            
        for j, i in enumerate(params[1]):
            n.connections[self.inLayer][0].params[j] = i

        n.convertToFastNetwork()

        self.n = n
#        
        self.n.convertToFastNetwork()
开发者ID:frederikhagel,项目名称:AI2-code,代码行数:39,代码来源:main_evolution_stage2.py

示例5: __init__

# 需要导入模块: from pybrain.structure import FeedForwardNetwork [as 别名]
# 或者: from pybrain.structure.FeedForwardNetwork import convertToFastNetwork [as 别名]
    def __init__(self, index, name, param):
        self.name = name
        self.index = index
        self.liste = []#ClassificationDataSet(17, 1, nb_classes=4)        
        self.status_good = True

        self.number_of_moves = 0
        self.number_of_sound_moves = 0

        n = FeedForwardNetwork()
        
#        self.inLayer = LinearLayer(17)
#        self.hiddenLayer = SigmoidLayer(5)
#        self.outLayer = LinearLayer(4)
#     
#        
#        n.addInputModule(self.inLayer)
#        n.addModule(self.hiddenLayer)
#        n.addOutputModule(self.outLayer)
        
        self.inLayer = LinearLayer(17)
        self.hiddenLayer1 = SigmoidLayer(15)
        self.hiddenLayer2 = SigmoidLayer(15)
        self.hiddenLayer3 = SigmoidLayer(15)
        self.hiddenLayer4 = SigmoidLayer(15)
        self.hiddenLayer5 = SigmoidLayer(15)
        self.hiddenLayer6 = SigmoidLayer(15)
        self.outLayer = LinearLayer(4)
        
        n.addInputModule(self.inLayer)
        n.addModule(self.hiddenLayer1)
        n.addModule(self.hiddenLayer2)
        n.addModule(self.hiddenLayer3)
        n.addModule(self.hiddenLayer4)
        n.addModule(self.hiddenLayer5)
        n.addModule(self.hiddenLayer6)
        n.addOutputModule(self.outLayer)        
        
        
        
        from pybrain.structure import FullConnection
        
        in_to_hidden = FullConnection(self.inLayer, self.hiddenLayer1)
        hidden_to_hidden1 = FullConnection(self.hiddenLayer1, self.hiddenLayer2)
        hidden_to_hidden2 = FullConnection(self.hiddenLayer2, self.hiddenLayer3)
        hidden_to_hidden3 = FullConnection(self.hiddenLayer3, self.hiddenLayer4)
        hidden_to_hidden4 = FullConnection(self.hiddenLayer4, self.hiddenLayer5)
        hidden_to_hidden5 = FullConnection(self.hiddenLayer5, self.hiddenLayer6)
        hidden_to_out = FullConnection(self.hiddenLayer6, self.outLayer)        
        
        n.addConnection(in_to_hidden)
        n.addConnection(hidden_to_hidden1)
        n.addConnection(hidden_to_hidden2)
        n.addConnection(hidden_to_hidden3)
        n.addConnection(hidden_to_hidden4)
        n.addConnection(hidden_to_hidden5)
        n.addConnection(hidden_to_out)        
        
#        in_to_hidden = FullConnection(self.inLayer, self.hiddenLayer)
#        hidden_to_out = FullConnection(self.hiddenLayer, self.outLayer)
        
#        n.addConnection(in_to_hidden)
#        n.addConnection(hidden_to_out)
        
        n.sortModules()
        
        print len(n.connections[self.inLayer][0].params)
        print len(n.connections[self.hiddenLayer1][0].params )
        print len(n.connections[self.hiddenLayer2][0].params)
        print len(n.connections[self.hiddenLayer3][0].params)
        print len(n.connections[self.hiddenLayer4][0].params)
        print len(n.connections[self.hiddenLayer5][0].params)
        print len(n.connections[self.hiddenLayer6][0].params)

        for j, i in enumerate(param[0]):
            n.connections[self.inLayer][0].params[j] = i        
        for j, i in enumerate(param[1]):
            n.connections[self.hiddenLayer1][0].params[j] = i        
        for j, i in enumerate(param[2]):
            n.connections[self.hiddenLayer2][0].params[j] = i
        for j, i in enumerate(param[3]):
            n.connections[self.hiddenLayer3][0].params[j] = i
        for j, i in enumerate(param[4]):
            n.connections[self.hiddenLayer4][0].params[j] = i        
        for j, i in enumerate(param[5]):
            n.connections[self.hiddenLayer5][0].params[j] = i        
        for j, i in enumerate(param[6]):
            n.connections[self.hiddenLayer6][0].params[j] = i

        n.convertToFastNetwork()

        self.n = n        
        self.n.convertToFastNetwork()
开发者ID:frederikhagel,项目名称:AI2-code,代码行数:95,代码来源:developing_ai_2.py


注:本文中的pybrain.structure.FeedForwardNetwork.convertToFastNetwork方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。