当前位置: 首页>>代码示例>>Python>>正文


Python FeedForwardNetwork.addConnection方法代码示例

本文整理汇总了Python中pybrain.structure.FeedForwardNetwork.addConnection方法的典型用法代码示例。如果您正苦于以下问题:Python FeedForwardNetwork.addConnection方法的具体用法?Python FeedForwardNetwork.addConnection怎么用?Python FeedForwardNetwork.addConnection使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pybrain.structure.FeedForwardNetwork的用法示例。


在下文中一共展示了FeedForwardNetwork.addConnection方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: crearRN

# 需要导入模块: from pybrain.structure import FeedForwardNetwork [as 别名]
# 或者: from pybrain.structure.FeedForwardNetwork import addConnection [as 别名]
def crearRN():
    #Se crea la red neuronal
    n = FeedForwardNetwork()

    #Se declaran las laminas de entrada, las laminas escondidas y las de salida de la red neuronal
    inLayer = LinearLayer(4096)
    hiddenLayer = SigmoidLayer(3)
    outLayer = LinearLayer(1)

    #Se agregan los layers a la red neuronal
    n.addInputModule(inLayer)
    n.addModule(hiddenLayer)
    n.addOutputModule(outLayer)

    #Se declaran las conexiones de los nodos
    in_to_hidden = FullConnection(inLayer, hiddenLayer)
    hidden_to_out = FullConnection(hiddenLayer, outLayer)

    #Se establecen las conexiones en los layers de la red neuronal
    n.addConnection(in_to_hidden)
    n.addConnection(hidden_to_out)

    #Red neuronal lista para usar
    n.sortModules()

    return n
开发者ID:Taberu,项目名称:despierta,代码行数:28,代码来源:redneuronal.py

示例2: encoderdecoder

# 需要导入模块: from pybrain.structure import FeedForwardNetwork [as 别名]
# 或者: from pybrain.structure.FeedForwardNetwork import addConnection [as 别名]
def encoderdecoder(outersize,innersize,indata,
                   fname):
    # create network
    n = FeedForwardNetwork()

    inLayer = LinearLayer(outersize)
    hiddenLayer = SigmoidLayer(innersize)
    outLayer = LinearLayer(outersize)

    n.addInputModule(inLayer)
    n.addModule(hiddenLayer)
    n.addOutputModule(outLayer)

    in_to_hidden = FullConnection(inLayer, hiddenLayer)
    hidden_to_out = FullConnection(hiddenLayer, outLayer)
    n.addConnection(in_to_hidden)
    n.addConnection(hidden_to_out)

    n.sortModules()
    
    # create dataset
    ds = SupervisedDataSet(outersize,outersize)
    for x,y in indata,indata:
        ds.addSample(x,y)

    # train network
    trainer = BackpropTrainer(n,ds)
    trainer.trainUntilConvergence()

    n.saveNetwork(fname)
    
    return [[in_to_hidden,hidden_to_out],
            [inLayer,hiddenLayer,outLayer],
            n]
开发者ID:haskellpostgresprogrammer,项目名称:python_files,代码行数:36,代码来源:aideeplearning.py

示例3: trainedANN

# 需要导入模块: from pybrain.structure import FeedForwardNetwork [as 别名]
# 或者: from pybrain.structure.FeedForwardNetwork import addConnection [as 别名]
def trainedANN():
    n = FeedForwardNetwork()

    n.addInputModule(LinearLayer(4, name='in'))
    n.addModule(SigmoidLayer(6, name='hidden'))
    n.addOutputModule(LinearLayer(2, name='out'))
    n.addConnection(FullConnection(n['in'], n['hidden'], name='c1'))
    n.addConnection(FullConnection(n['hidden'], n['out'], name='c2'))

    n.sortModules()

    draw_connections(n)
    # d = generateTrainingData()
    d = getDatasetFromFile(root.path()+"/res/dataSet")
    t = BackpropTrainer(n, d, learningrate=0.001, momentum=0.75)
    t.trainOnDataset(d)
    # FIXME: I'm not sure the recurrent ANN is going to converge
    # so just training for fixed number of epochs

    count = 0
    while True:
        globErr = t.train()
        print globErr
        if globErr < 0.01:
            break
        count += 1
        if count == 20:
            return trainedANN()

    exportANN(n)
    draw_connections(n)

    return n
开发者ID:DianaShatunova,项目名称:NEUCOGAR,代码行数:35,代码来源:main.py

示例4: BackupNetwork

# 需要导入模块: from pybrain.structure import FeedForwardNetwork [as 别名]
# 或者: from pybrain.structure.FeedForwardNetwork import addConnection [as 别名]
def BackupNetwork(genome=None):
	#initial a network [12,12,4] and initial weights are baseline policy versions
	
	from pybrain.structure import FeedForwardNetwork,LinearLayer,TanhLayer,FullConnection
	network = FeedForwardNetwork()
	inLayer= LinearLayer(12)
	hiddenLayer = LinearLayer(12)
	outLayer = TanhLayer(4)
	network.addInputModule(inLayer)
	network.addModule(hiddenLayer)
	network.addOutputModule(outLayer)
	
	weights = [] 	
	if(genome == None):
		import pickle
		weights = pickle.load(open("seed"))
	else:
		weights = genome
	 
	in_to_hidden = FullConnection(inLayer,hiddenLayer)   
	hidden_to_out = FullConnection(hiddenLayer,outLayer)
	for i in range(0,144):
		in_to_hidden.params[i] = weights[i]
	for j in range(0,48):
		hidden_to_out.params[j] = weights[j+144] 		
	network.addConnection(in_to_hidden)
	network.addConnection(hidden_to_out)
	network.sortModules()
	return network 		
开发者ID:Charles-Lau-,项目名称:rl_competition,代码行数:31,代码来源:OneLayerEvolution_Mixed_Version.py

示例5: trained_cat_dog_ANN

# 需要导入模块: from pybrain.structure import FeedForwardNetwork [as 别名]
# 或者: from pybrain.structure.FeedForwardNetwork import addConnection [as 别名]
def trained_cat_dog_ANN():
    n = FeedForwardNetwork()
    d = get_cat_dog_trainset()
    input_size = d.getDimension('input')
    n.addInputModule(LinearLayer(input_size, name='in'))
    n.addModule(SigmoidLayer(input_size+1500, name='hidden'))
    n.addOutputModule(LinearLayer(2, name='out'))
    n.addConnection(FullConnection(n['in'], n['hidden'], name='c1'))
    n.addConnection(FullConnection(n['hidden'], n['out'], name='c2'))
    n.sortModules()
    n.convertToFastNetwork()
    print 'successful converted to fast network'
    t = BackpropTrainer(n, d, learningrate=0.0001)#, momentum=0.75)

    count = 0
    while True:
        globErr = t.train()
        print globErr
        count += 1
        if globErr < 0.01:
            break
        if count == 30:
            break


    exportCatDogANN(n)
    return n
开发者ID:DianaShatunova,项目名称:NEUCOGAR,代码行数:29,代码来源:main.py

示例6: _constructNetwork

# 需要导入模块: from pybrain.structure import FeedForwardNetwork [as 别名]
# 或者: from pybrain.structure.FeedForwardNetwork import addConnection [as 别名]
 def _constructNetwork(self, nIn, nOut, params):
     ''' Construct the network '''
     nHidden = params.setdefault('nHidden', 2)
     hiddenSize = np.empty(nHidden)
     for i in range(nHidden):
         pstr = 'hiddenSize[' + str(i) + ']'
         hiddenSize[i] = params.setdefault(pstr, nIn + nOut)
     # Construct network
     ann = FeedForwardNetwork()
     
     # Add layers
     layers = []
     layers.append(LinearLayer(nIn))
     for nHid in hiddenSize:
         layers.append(SoftmaxLayer(nHid))
     layers.append(LinearLayer(nOut))
     ann.addOutputModule(layers[-1])
     ann.addInputModule(layers[0])
     for mod in layers[1:-1]:
         ann.addModule(mod)
     
     # Connections
     for i, mod in enumerate(layers):
         if i < len(layers) - 1:
             conn = FullConnection(mod, layers[i+1])
             ann.addConnection(conn)
     
     # Sort the modules
     ann.sortModules()
     return ann
开发者ID:yanatan16,项目名称:minerva,代码行数:32,代码来源:fnn.py

示例7: build_network

# 需要导入模块: from pybrain.structure import FeedForwardNetwork [as 别名]
# 或者: from pybrain.structure.FeedForwardNetwork import addConnection [as 别名]
    def build_network(self, layers=None, end=1):
        layerobjects = []
        for item in layers:
            try:
                t, n = item
                if t == "sig":
                    if n == 0:
                        continue
                    layerobjects.append(SigmoidLayer(n))
            except TypeError:
                layerobjects.append(LinearLayer(item))

        n = FeedForwardNetwork()
        n.addInputModule(layerobjects[0])

        for i, layer in enumerate(layerobjects[1:-1]):
            n.addModule(layer)
            connection = FullConnection(layerobjects[i], layerobjects[i+1])
            n.addConnection(connection)

        n.addOutputModule(layerobjects[-1])
        connection = FullConnection(layerobjects[-2], layerobjects[-1])
        n.addConnection(connection)

        n.sortModules()
        return n
开发者ID:crcollins,项目名称:ml-class,代码行数:28,代码来源:neural.py

示例8: create_ff_network

# 需要导入模块: from pybrain.structure import FeedForwardNetwork [as 别名]
# 或者: from pybrain.structure.FeedForwardNetwork import addConnection [as 别名]
def create_ff_network(options):
    """Create the FeedForware network
    :param options: The input options.
    :return:
    """

    # Create FF network
    net = FeedForwardNetwork()

    # Create each Layer instance
    in_layer = LinearLayer(options['inUnitCount'])
    hidden_layer = SigmoidLayer(options['hiddenUnitCount'])
    out_layer = LinearLayer(options['outUnitCount'])

    # Build network layer topology
    net.addInputModule(in_layer)
    net.addModule(hidden_layer)
    net.addOutputModule(out_layer)

    in_to_hidden = FullConnection(in_layer, hidden_layer)
    hidden_to_out = FullConnection(hidden_layer, out_layer)

    net.addConnection(in_to_hidden)
    net.addConnection(hidden_to_out)

    # Complete structure network
    net.sortModules()

    return net
开发者ID:ammeyjohn,项目名称:rubbish,代码行数:31,代码来源:nn.py

示例9: main

# 需要导入模块: from pybrain.structure import FeedForwardNetwork [as 别名]
# 或者: from pybrain.structure.FeedForwardNetwork import addConnection [as 别名]
def main():
    n = FeedForwardNetwork()

    in_layer = LinearLayer(2)
    hidden_layer = SigmoidLayer(3)
    out_layer = LinearLayer(1)

    n.addInputModule(in_layer)
    n.addModule(hidden_layer)
    n.addOutputModule(out_layer)

    in_to_hidden = FullConnection(in_layer, hidden_layer)
    hidden_to_out = FullConnection(hidden_layer, out_layer)

    n.addConnection(in_to_hidden)
    n.addConnection(hidden_to_out)

    n.sortModules()

    print(">>> print n")
    print(n)

    print(">>> n.activate([1, 2])")
    print(n.activate([1, 2]))

    print(">>> in_to_hidden.params")
    print(in_to_hidden.params)

    print(">>> hidden_to_out.params")
    print(hidden_to_out.params)

    print(">>> n.params")
    print(n.params)
开发者ID:laysakura,项目名称:DeepLearning-shugyou,代码行数:35,代码来源:print_FeedForwardNetwork.py

示例10: NNet

# 需要导入模块: from pybrain.structure import FeedForwardNetwork [as 别名]
# 或者: from pybrain.structure.FeedForwardNetwork import addConnection [as 别名]
class NNet(FunctionApproximator):
	def __init__(self, num_features, num_hidden_neurons):
		super(NNet,self).__init__(num_features)

		self.ds = SupervisedDataSet(num_features, 1)

		self.net = FeedForwardNetwork()
		self.net.addInputModule(LinearLayer(num_features, name='in'))
		self.net.addModule(LinearLayer(num_hidden_neurons, name='hidden'))
		self.net.addOutputModule(LinearLayer(1, name='out'))
		self.net.addConnection(FullConnection(self.net['in'], self.net['hidden'], name='c1'))
		self.net.addConnection(FullConnection(self.net['hidden'], self.net['out'], name='c2'))
		self.net.sortModules()

	def getY(self, inpt):
		#giving NAN
		return self.net.activate(inpt)

	def update(self, inpt, target):
		q_old = self.qvalue(state, action)
		q_new = self.qvalue(new_state, new_action)
		target = q_old + self.alpha*(reward + (self.gamma*q_new)-q_old)
		

		self.ds.addSample(inpt, target)
		# print inpt.shape, target.shape
		# print inpt, target
		trainer = BackpropTrainer(self.net, self.ds)
		# try:
		# 	trainer.trainUntilConvergence()
		# except:
		trainer.train()
开发者ID:rahul003,项目名称:rl_page_replacement,代码行数:34,代码来源:approximator.py

示例11: __init__

# 需要导入模块: from pybrain.structure import FeedForwardNetwork [as 别名]
# 或者: from pybrain.structure.FeedForwardNetwork import addConnection [as 别名]
   def __init__(self, index, name, params):
        self.name = name
        self.index = index
        
        self.status_good = True

        n = FeedForwardNetwork()
        
        self.inLayer = LinearLayer(17)
        self.hiddenLayer = SigmoidLayer(5)
        self.outLayer = LinearLayer(4)
     
        
        n.addInputModule(self.inLayer)
        n.addModule(self.hiddenLayer)
        n.addOutputModule(self.outLayer)
        
        from pybrain.structure import FullConnection
        in_to_hidden = FullConnection(self.inLayer, self.hiddenLayer)
        hidden_to_out = FullConnection(self.hiddenLayer, self.outLayer)
        
        n.addConnection(in_to_hidden)
        n.addConnection(hidden_to_out)
        
        n.sortModules()
        
        for j, i in enumerate(params[0]):
            n.connections[self.hiddenLayer][0].params[j] = i  
            
        for j, i in enumerate(params[1]):
            n.connections[self.inLayer][0].params[j] = i

        self.n = n
开发者ID:frederikhagel,项目名称:AI2-code,代码行数:35,代码来源:main_evolution.py

示例12: create_network

# 需要导入模块: from pybrain.structure import FeedForwardNetwork [as 别名]
# 或者: from pybrain.structure.FeedForwardNetwork import addConnection [as 别名]
def create_network():
    # Create the network itself
    network = FeedForwardNetwork()
    # Create layers
    NUMBER_OF_INPUT_BYTES = 1600 # because at input we have picture 40x40 size
    NUMBER_OF_HIDDEN_LAYERS = 10  # number of hidden layers
    NUMBER_OF_OUTPUT_CLASSES = 8 # because in output we have 8 classes
    inLayer = LinearLayer( NUMBER_OF_INPUT_BYTES )
    hiddenLayer = SigmoidLayer( NUMBER_OF_HIDDEN_LAYERS )
    outLayer = LinearLayer( NUMBER_OF_OUTPUT_CLASSES )
    # Create connections between layers
    # We create FullConnection - each neuron of one layer is connected to each neuron of other layer
    in_to_hidden = FullConnection( inLayer, hiddenLayer )
    hidden_to_out = FullConnection( hiddenLayer, outLayer )
    # Add layers to our network
    network.addInputModule( inLayer )
    network.addModule( hiddenLayer )
    network.addOutputModule( outLayer )
    # Add connections to network
    network.addConnection( in_to_hidden )
    network.addConnection( hidden_to_out )
    # Sort modules to make multilayer perceptron usable
    network.sortModules()
    # prepare array to activate network
    d_letter_array = read_array( "d" )
    # activate network
    network.activate( d_letter_array )
    return network
开发者ID:wojciech161,项目名称:softcomputing-project,代码行数:30,代码来源:perceptron.py

示例13: __init__

# 需要导入模块: from pybrain.structure import FeedForwardNetwork [as 别名]
# 或者: from pybrain.structure.FeedForwardNetwork import addConnection [as 别名]
    def __init__(self, index, name, params):
        self.name = name
        self.index = index
        self.liste = []#ClassificationDataSet(17, 1, nb_classes=4)        
        self.status_good = True

        self.number_of_moves = 0
        self.number_of_sound_moves = 0

        n = FeedForwardNetwork()
        
        self.inLayer = LinearLayer(5)
        self.hiddenLayer1 = SigmoidLayer(15)
        self.hiddenLayer2 = SigmoidLayer(15)        
        self.hiddenLayer3 = SigmoidLayer(15)
        self.outLayer = LinearLayer(4)
     
        
        n.addInputModule(self.inLayer)
        n.addModule(self.hiddenLayer1)
        n.addModule(self.hiddenLayer2)
        n.addModule(self.hiddenLayer3)
        n.addOutputModule(self.outLayer)
        
        from pybrain.structure import FullConnection
        in_to_hidden = FullConnection(self.inLayer, self.hiddenLayer1)
        hidden_to_hidden1 = FullConnection(self.hiddenLayer1, self.outLayer2)
        hidden_to_hidden2 = FullConnection(self.hiddenLayer2, self.outLayer3)
                
        hidden_to_out = FullConnection(self.hiddenLayer3, self.outLayer)
        
        n.addConnection(in_to_hidden)
         n.addConnection(hidden_to_hidden1)
开发者ID:frederikhagel,项目名称:AI2-code,代码行数:35,代码来源:small_input.py

示例14: __init__

# 需要导入模块: from pybrain.structure import FeedForwardNetwork [as 别名]
# 或者: from pybrain.structure.FeedForwardNetwork import addConnection [as 别名]
class MyNet:

	def __init__(self, file='config.xml'):
		self.net = FeedForwardNetwork()
		self.file = file


	def constructNet(self, input, hidden, output): 
		inputLayer = LinearLayer(input)
		hiddenLayer = TanhLayer(hidden)
		outputLayer = LinearLayer(output)

		self.net.addInputModule(inputLayer)
		self.net.addModule(hiddenLayer)
		self.net.addOutputModule(outputLayer)

		conn1 = FullConnection(inputLayer, hiddenLayer)
		conn2 = FullConnection(hiddenLayer, outputLayer)

		self.net.addConnection(conn1)
		self.net.addConnection(conn2)

	
	def setup(self):
		self.net.sortModules()

	
	def saveToFile(self,file='config.xml'):
		NetworkWriter.writeToFile(self.net, file)


	def loadFromFile(self, file='config.xml'):
		self.net = NetworkReader.readFrom(file)
开发者ID:jszum,项目名称:TranslatorNN,代码行数:35,代码来源:network.py

示例15: _createRBF

# 需要导入模块: from pybrain.structure import FeedForwardNetwork [as 别名]
# 或者: from pybrain.structure.FeedForwardNetwork import addConnection [as 别名]
	def _createRBF(self):

        	# choose random centers on map
		for i in range(self.numCenters):        	
			self.centers.append(self.env._randomInitPose())

		# create an RBF network
		params = FeedForwardNetwork()
		
		inLayer = LinearLayer(self.task.outdim)
		hiddenLayer = RBFLayer(self.numCenters, self.centers)
		#inLayer = RBFLayer(self.numCenters, self.centers)
		outLayer = LinearLayer(self.task.indim)

		params.addInputModule(inLayer)
		params.addModule(hiddenLayer)
		params.addOutputModule(outLayer)

		in_to_hidden = FullConnection(inLayer,hiddenLayer)
		hidden_to_out = FullConnection(hiddenLayer,outLayer)
		params.addConnection(in_to_hidden)
		params.addConnection(hidden_to_out)

		params.sortModules()

		return params
开发者ID:krylenko,项目名称:python,代码行数:28,代码来源:INFOMAX__pybrainNode.py


注:本文中的pybrain.structure.FeedForwardNetwork.addConnection方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。