本文整理汇总了Python中pybrain.rl.experiments.Experiment类的典型用法代码示例。如果您正苦于以下问题:Python Experiment类的具体用法?Python Experiment怎么用?Python Experiment使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Experiment类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testMaze
def testMaze():
# simplified version of the reinforcement learning tutorial example
structure = np.array([[1, 1, 1, 1, 1],
[1, 0, 0, 0, 1],
[1, 0, 1, 0, 1],
[1, 0, 1, 0, 1],
[1, 1, 1, 1, 1]])
shape = np.array(structure.shape)
environment = Maze(structure, tuple(shape - 2))
controller = ActionValueTable(shape.prod(), 4)
controller.initialize(1.)
learner = Q()
agent = LearningAgent(controller, learner)
task = MDPMazeTask(environment)
experiment = Experiment(task, agent)
for i in range(3):
experiment.doInteractions(40)
controller.params.reshape(shape.prod(), 4).max(1).reshape(*shape)
# (0, 0) is upper left and (0, N) is upper right, so flip matrix upside down to match NESW action order
greedy_policy = np.argmax(controller.params.reshape(shape.prod(), 4),1)
greedy_policy = np.flipud(np.array(list('NESW'))[greedy_policy].reshape(shape))
maze = np.flipud(np.array(list(' #'))[structure])
print('Maze map:')
print('\n'.join(''.join(row) for row in maze))
print('Greedy policy:')
print('\n'.join(''.join(row) for row in greedy_policy))
assert '\n'.join(''.join(row) for row in greedy_policy) == 'NNNNN\nNSNNN\nNSNNN\nNEENN\nNNNNN'
示例2: testNet
def testNet(learner, moduleNet, env, maxPlaneStartDist, stepSize,numAngs,thermRadius):
# Turn off exploration
from pybrain.rl.explorers.discrete.egreedy import EpsilonGreedyExplorer
learner._setExplorer(EpsilonGreedyExplorer(0))
agent = LearningAgent(moduleNet, learner)
# Move the plane back to the start by resetting the environment
env = contEnv.contThermEnvironment(maxPlaneStartDist, stepSize,numAngs,thermRadius)
from simpleThermalTask import SimpThermTask
task = SimpThermTask(env)
from pybrain.rl.experiments import Experiment
experiment = Experiment(task, agent)
# Have the plane move 100 times, and plot the position of the plane (hopefully it moves to the high reward area)
testIter = 100
trainResults = [env.distPlane()]
for i in range(testIter):
experiment.doInteractions(1)
trainResults.append(env.distPlane())
# Plot the training results
import matplotlib.pyplot as plt
plt.figure(1)
plt.plot(trainResults,'o')
plt.ylabel('Distance from center of thermal')
plt.xlabel('Interaction iteration')
plt.title('Test Results for Neural Fitted Q Learner')
plt.show()
示例3: run_bbox
def run_bbox(verbose=False):
n_features = n_actions = max_time = -1
if bbox.is_level_loaded():
bbox.reset_level()
else:
bbox.load_level("../levels/train_level.data", verbose=1)
n_features = bbox.get_num_of_features()
n_actions = bbox.get_num_of_actions()
max_time = bbox.get_max_time()
av_table = ActionValueTable(n_features, n_actions)
av_table.initialize(0.2)
print av_table._params
learner = Q(0.5, 0.1)
learner._setExplorer(EpsilonGreedyExplorer(0.4))
agent = LearningAgent(av_table, learner)
environment = GameEnvironment()
task = GameTask(environment)
experiment = Experiment(task, agent)
while environment.finish_flag:
experiment.doInteractions(1)
agent.learn()
bbox.finish(verbose=1)
示例4: initExperiment
def initExperiment(alg, optimistic=True):
env = Maze(envmatrix, (7, 7))
# create task
task = MDPMazeTask(env)
# create value table and initialize with ones
table = ActionValueTable(81, 4)
if optimistic:
table.initialize(1.)
else:
table.initialize(0.)
# create agent with controller and learner - use SARSA(), Q() or QLambda() here
learner = alg()
# standard exploration is e-greedy, but a different type can be chosen as well
# learner.explorer = BoltzmannExplorer()
agent = LearningAgent(table, learner)
agent.batchMode = False
experiment = Experiment(task, agent)
experiment.allRewards = []
return experiment
示例5: learn
def learn(self, number_of_iterations):
learner = Q(0.2, 0.8)
task = CartMovingTask(self.environment)
self.controller = ActionValueTable(
reduce(lambda x, y: x * y, map(lambda x: len(x), self.ranges)), self.force_granularity
)
self.controller.initialize(1.0)
agent = LearningAgent(self.controller, learner)
experiment = Experiment(task, agent)
for i in range(number_of_iterations):
experiment.doInteractions(1)
agent.learn()
agent.reset()
with open("test.pcl", "w+") as f:
pickle.dump(self.controller, f)
示例6: __init__
def __init__(self, event_queue_name, hub_queue_name):
super().__init__()
# create environment
self.conn = boto.sqs.connect_to_region(constants.REGION)
self.event_queue = self.conn.get_queue(event_queue_name)
self.event_queue.set_message_class(MHMessage)
self.env = DogEnv(DogEnv.ALL_QUIET, DogEnv.ALL_QUIET, self.event_queue, hub_queue_name)
self.env.delay = (self.episodes == 1)
# create task
self.task = QuietDogTask(self.env)
# create value table and initialize with ones
# TODO: Get number of states from DogEnv
self.table = ActionValueTable(2*5*4, 5*4)
self.table.initialize(1.)
# create agent with controller and learner - use SARSA(), Q() or QLambda() here
self.learner = SARSA()
# standard exploration is e-greedy, but a different type can be chosen as well
self.learner.explorer = BoltzmannExplorer()
# create agent
self.agent = DogAgent(self.table, self.learner)
# create experiment
self.experiment = Experiment(self.task, self.agent)
示例7: initExperiment
def initExperiment(learnalg='Q', history=None, binEdges='10s',
scriptfile='./rlRunExperiment_v2.pl',
resetscript='./rlResetExperiment.pl'):
if binEdges == '10s':
centerBinEdges = centerBinEdges_10s
elif binEdges == '30s':
centerBinEdges = centerBinEdges_30s
elif binEdges == 'lessperturbed':
centerBinEdges = centerBinEdges_10s_lessperturbed
elif binEdges is None:
centerBinEdges = None
else:
raise Exception("No bins for given binEdges setting")
env = OmnetEnvironment(centerBinEdges, scriptfile, resetscript)
if history is not None:
env.data = history['data']
task = OmnetTask(env, centerBinEdges)
if history is not None:
task.allrewards = history['rewards']
if learnalg == 'Q':
nstates = env.numSensorBins ** env.numSensors
if history is None:
av_table = ActionValueTable(nstates, env.numActions)
av_table.initialize(1.)
else:
av_table = history['av_table']
learner = Q(0.1, 0.9) # alpha, gamma
learner._setExplorer(EpsilonGreedyExplorer(0.05)) # epsilon
elif learnalg == 'NFQ':
av_table = ActionValueNetwork(env.numSensors, env.numActions)
learner = NFQ()
else:
raise Exception("learnalg unknown")
agent = LearningAgent(av_table, learner)
experiment = Experiment(task, agent)
if history is None:
experiment.nruns = 0
else:
experiment.nruns = history['nruns']
return experiment
示例8: maze
def maze():
# import sys, time
pylab.gray()
pylab.ion()
# The goal appears to be in the upper right
structure = [
"!!!!!!!!!!",
"! ! ! ! !",
"! !! ! ! !",
"! ! !",
"! !!!!!! !",
"! ! ! !",
"! ! !!!! !",
"! !",
"! !!!!! !",
"! ! !",
"!!!!!!!!!!",
]
structure = np.array([[ord(c) - ord(" ") for c in row] for row in structure])
shape = np.array(structure.shape)
environment = Maze(structure, tuple(shape - 2))
controller = ActionValueTable(shape.prod(), 4)
controller.initialize(1.0)
learner = Q()
agent = LearningAgent(controller, learner)
task = MDPMazeTask(environment)
experiment = Experiment(task, agent)
for i in range(100):
experiment.doInteractions(100)
agent.learn()
agent.reset()
# 4 actions, 81 locations/states (9x9 grid)
# max(1) gives/plots the biggest objective function value for that square
pylab.pcolor(controller.params.reshape(81, 4).max(1).reshape(9, 9))
pylab.draw()
# (0, 0) is upper left and (0, N) is upper right, so flip matrix upside down to match NESW action order
greedy_policy = np.argmax(controller.params.reshape(shape.prod(), 4), 1)
greedy_policy = np.flipud(np.array(list("NESW"))[greedy_policy].reshape(shape))
maze = np.flipud(np.array(list(" #"))[structure])
print("Maze map:")
print("\n".join("".join(row) for row in maze))
print("Greedy policy:")
print("\n".join("".join(row) for row in greedy_policy))
示例9: run
def run():
"""
number of states is:
current value: 0-20
number of actions:
Stand=0, Hit=1 """
# define action value table
av_table = ActionValueTable(MAX_VAL, MIN_VAL)
av_table.initialize(0.)
# define Q-learning agent
q_learner = Q(Q_ALPHA, Q_GAMMA)
q_learner._setExplorer(EpsilonGreedyExplorer(0.0))
agent = LearningAgent(av_table, q_learner)
# define the environment
env = BlackjackEnv()
# define the task
task = BlackjackTask(env, verbosity=VERBOSE)
# finally, define experiment
experiment = Experiment(task, agent)
# ready to go, start the process
for _ in range(NB_ITERATION):
experiment.doInteractions(1)
if task.lastreward != 0:
if VERBOSE:
print "Agent learn"
agent.learn()
print '|First State|Choice 0 (Stand)|Choice 1 (Hit)|Relative value of Standing over Hitting|'
print '|:-------:|:-------|:-----|:-----|'
for i in range(MAX_VAL):
print '| %s | %s | %s | %s |' % (
(i+1),
av_table.getActionValues(i)[0],
av_table.getActionValues(i)[1],
av_table.getActionValues(i)[0] - av_table.getActionValues(i)[1]
)
示例10: __init__
def __init__(self, mode):
self.mode = mode
cu.mem('Reinforcement Learning Started')
self.environment = BoxSearchEnvironment(config.get(mode+'Database'), mode, config.get(mode+'GroundTruth'))
self.controller = QNetwork()
cu.mem('QNetwork controller created')
self.learner = None
self.agent = BoxSearchAgent(self.controller, self.learner)
self.task = BoxSearchTask(self.environment, config.get(mode+'GroundTruth'))
self.experiment = Experiment(self.task, self.agent)
示例11: __init__
class RL:
def __init__(self):
self.av_table = ActionValueTable(4, 5)
self.av_table.initialize(0.1)
learner = SARSA()
learner._setExplorer(EpsilonGreedyExplorer(0.0))
self.agent = LearningAgent(self.av_table, learner)
env = HASSHEnv()
task = HASSHTask(env)
self.experiment = Experiment(task, self.agent)
def go(self):
global rl_params
rassh.core.constants.rl_params = self.av_table.params.reshape(4,5)[0]
self.experiment.doInteractions(1)
self.agent.learn()
示例12: __init__
def __init__(self):
self.environment = GameEnv()
av_table = ActionValueTable(self.environment.outdim, self.environment.indim)
av_table.initialize(0.) # todo: save & restore agents state
learner = Q()
learner._setExplorer(EpsilonGreedyExplorer())
agent = LearningAgent(av_table, learner)
self.agent = agent
self.task = GameTask(self.environment)
self.experiment = Experiment(self.task, self.agent)
示例13: explore_maze
def explore_maze():
# simplified version of the reinforcement learning tutorial example
structure = [
list("!!!!!!!!!!"),
list("! ! ! ! !"),
list("! !! ! ! !"),
list("! ! !"),
list("! !!!!!! !"),
list("! ! ! !"),
list("! ! !!!! !"),
list("! !"),
list("! !!!!! !"),
list("! ! !"),
list("!!!!!!!!!!"),
]
structure = np.array([[ord(c) - ord(" ") for c in row] for row in structure])
shape = np.array(structure.shape)
environment = Maze(structure, tuple(shape - 2))
controller = ActionValueTable(shape.prod(), 4)
controller.initialize(1.0)
learner = Q()
agent = LearningAgent(controller, learner)
task = MDPMazeTask(environment)
experiment = Experiment(task, agent)
for i in range(30):
experiment.doInteractions(30)
agent.learn()
agent.reset()
controller.params.reshape(shape.prod(), 4).max(1).reshape(*shape)
# (0, 0) is upper left and (0, N) is upper right, so flip matrix upside down to match NESW action order
greedy_policy = np.argmax(controller.params.reshape(shape.prod(), 4), 1)
greedy_policy = np.flipud(np.array(list("NESW"))[greedy_policy].reshape(shape))
maze = np.flipud(np.array(list(" #"))[structure])
print("Maze map:")
print("\n".join("".join(row) for row in maze))
print("Greedy policy:")
print("\n".join("".join(row) for row in greedy_policy))
assert "\n".join("".join(row) for row in greedy_policy) == "NNNNN\nNSNNN\nNSNNN\nNEENN\nNNNNN"
示例14: PlayYourCardsRight
class PlayYourCardsRight(Feature):
def __init__(self, text_to_speech, speech_to_text):
Feature.__init__(self)
# setup AV Table
self.av_table = GameTable(13, 2)
if(self.av_table.loadParameters() == False):
self.av_table.initialize(0.)
# setup a Q-Learning agent
learner = Q(0.5, 0.0)
learner._setExplorer(EpsilonGreedyExplorer(0.0))
self.agent = LearningAgent(self.av_table, learner)
# setup game interaction
self.game_interaction = GameInteraction(text_to_speech, speech_to_text)
# setup environment
environment = GameEnvironment(self.game_interaction)
# setup task
task = GameTask(environment, self.game_interaction)
# setup experiment
self.experiment = Experiment(task, self.agent)
@property
def is_speaking(self):
return self.game_interaction.is_speaking
def _thread(self, args):
# let's play our cards right!
while not self.is_stop:
self.experiment.doInteractions(1)
self.agent.learn()
self.av_table.saveParameters()
示例15: __init__
def __init__(self, text_to_speech, speech_to_text):
Feature.__init__(self)
# setup AV Table
self.av_table = GameTable(13, 2)
if(self.av_table.loadParameters() == False):
self.av_table.initialize(0.)
# setup a Q-Learning agent
learner = Q(0.5, 0.0)
learner._setExplorer(EpsilonGreedyExplorer(0.0))
self.agent = LearningAgent(self.av_table, learner)
# setup game interaction
self.game_interaction = GameInteraction(text_to_speech, speech_to_text)
# setup environment
environment = GameEnvironment(self.game_interaction)
# setup task
task = GameTask(environment, self.game_interaction)
# setup experiment
self.experiment = Experiment(task, self.agent)