本文整理汇总了Python中pyFAI.azimuthalIntegrator.AzimuthalIntegrator.twoThetaArray方法的典型用法代码示例。如果您正苦于以下问题:Python AzimuthalIntegrator.twoThetaArray方法的具体用法?Python AzimuthalIntegrator.twoThetaArray怎么用?Python AzimuthalIntegrator.twoThetaArray使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pyFAI.azimuthalIntegrator.AzimuthalIntegrator
的用法示例。
在下文中一共展示了AzimuthalIntegrator.twoThetaArray方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: diff_tth_X
# 需要导入模块: from pyFAI.azimuthalIntegrator import AzimuthalIntegrator [as 别名]
# 或者: from pyFAI.azimuthalIntegrator.AzimuthalIntegrator import twoThetaArray [as 别名]
def diff_tth_X(self, dx=0.1):
"""
Jerome peux-tu décrire de quoi il retourne ???
@param dx: ???
@type: float ???
@return: ???
@rtype: ???
"""
f = self.ai.getFit2D()
fp = f.copy()
fm = f.copy()
fm["centerX"] -= dx / 2.0
fp["centerX"] += dx / 2.0
ap = AzimuthalIntegrator()
am = AzimuthalIntegrator()
ap.setFit2D(**fp)
am.setFit2D(**fm)
dtthX = (ap.twoThetaArray(self.shape) - am.twoThetaArray(self.shape))\
/ dx
tth, I = self.ai.xrpd(self.img, max(self.shape))
dI = SGModule.getSavitzkyGolay(I, npoints=5, degree=2, order=1)\
/ (tth[1] - tth[0])
dImg = self.reconstruct(tth, dI)
return (dtthX * dImg).sum()
示例2: diff_Fit2D
# 需要导入模块: from pyFAI.azimuthalIntegrator import AzimuthalIntegrator [as 别名]
# 或者: from pyFAI.azimuthalIntegrator.AzimuthalIntegrator import twoThetaArray [as 别名]
def diff_Fit2D(self, axis="all", dx=0.1):
"""
???
@param axis: ???
@type axis: ???
@param dx: ???
@type dx: ???
@return: ???
@rtype: ???
"""
tth, I = self.ai.xrpd(self.img, max(self.shape))
dI = SGModule.getSavitzkyGolay(I, npoints=5, degree=2, order=1) / (tth[1] - tth[0])
dImg = self.reconstruct(tth, dI)
f = self.ai.getFit2D()
tth2d_ref = self.ai.twoThetaArray(self.shape) # useless variable ???
keys = ["centerX", "centerY", "tilt", "tiltPlanRotation"]
if axis != "all":
keys = [i for i in keys if i == axis]
grad = {}
for key in keys:
fp = f.copy()
fp[key] += dx
ap = AzimuthalIntegrator()
ap.setFit2D(**fp)
dtth = (ap.twoThetaArray(self.shape) - self.ai.twoThetaArray(self.shape)) / dx
grad[key] = (dtth * dImg).sum()
if axis == "all":
return grad
else:
return grad[axis]
示例3: diff_tth_tilt
# 需要导入模块: from pyFAI.azimuthalIntegrator import AzimuthalIntegrator [as 别名]
# 或者: from pyFAI.azimuthalIntegrator.AzimuthalIntegrator import twoThetaArray [as 别名]
def diff_tth_tilt(self, dx=0.1):
"""
idem ici ???
@param dx: ???
@type dx: float ???
@return: ???
@rtype: ???
"""
f = self.ai.getFit2D()
fp = f.copy()
fm = f.copy()
fm["tilt"] -= dx / 2.0
fp["tilt"] += dx / 2.0
ap = AzimuthalIntegrator()
am = AzimuthalIntegrator()
ap.setFit2D(**fp)
am.setFit2D(**fm)
dtthX = (ap.twoThetaArray(self.shape) - am.twoThetaArray(self.shape)) / dx
tth, I = self.ai.xrpd(self.img, max(self.shape))
dI = SGModule.getSavitzkyGolay(I, npoints=5, degree=2, order=1) / (tth[1] - tth[0])
dImg = self.reconstruct(tth, dI)
return (dtthX * dImg).sum()
示例4: ObliqueAngleDetectorAbsorptionCorrectionTest
# 需要导入模块: from pyFAI.azimuthalIntegrator import AzimuthalIntegrator [as 别名]
# 或者: from pyFAI.azimuthalIntegrator.AzimuthalIntegrator import twoThetaArray [as 别名]
class ObliqueAngleDetectorAbsorptionCorrectionTest(unittest.TestCase):
def setUp(self):
# defining geometry
image_shape = [2048, 2048] # pixel
detector_distance = 200 # mm
wavelength = 0.31 # angstrom
center_x = 1024 # pixel
center_y = 1024 # pixel
self.tilt = 0 # degree
self.rotation = 0 # degree
pixel_size = 79 # um
dummy_tth = np.linspace(0, 35, 2000)
dummy_int = np.ones(dummy_tth.shape)
self.geometry = AzimuthalIntegrator()
self.geometry.setFit2D(directDist=detector_distance,
centerX=center_x,
centerY=center_y,
tilt=self.tilt,
tiltPlanRotation=self.rotation,
pixelX=pixel_size,
pixelY=pixel_size)
self.geometry.wavelength = wavelength / 1e10
self.dummy_img = self.geometry.calcfrom1d(dummy_tth, dummy_int, shape=image_shape, correctSolidAngle=True)
self.tth_array = self.geometry.twoThetaArray(image_shape)
self.azi_array = self.geometry.chiArray(image_shape)
def tearDown(self):
del self.azi_array
del self.tth_array
del self.dummy_img
del self.geometry
gc.collect()
def test_that_it_is_correctly_calculating(self):
oblique_correction = ObliqueAngleDetectorAbsorptionCorrection(
tth_array=self.tth_array,
azi_array=self.azi_array,
detector_thickness=40,
absorption_length=465.5,
tilt=self.tilt,
rotation=self.rotation
)
oblique_correction_data = oblique_correction.get_data()
self.assertGreater(np.sum(oblique_correction_data), 0)
self.assertEqual(oblique_correction_data.shape, self.dummy_img.shape)
del oblique_correction
示例5: CbnCorrectionTest
# 需要导入模块: from pyFAI.azimuthalIntegrator import AzimuthalIntegrator [as 别名]
# 或者: from pyFAI.azimuthalIntegrator.AzimuthalIntegrator import twoThetaArray [as 别名]
class CbnCorrectionTest(unittest.TestCase):
def setUp(self):
# defining geometry
image_shape = [2048, 2048] # pixel
detector_distance = 200 # mm
wavelength = 0.31 # angstrom
center_x = 1024 # pixel
center_y = 1024 # pixel
tilt = 0 # degree
rotation = 0 # degree
pixel_size = 79 # um
dummy_tth = np.linspace(0, 35, 2000)
dummy_int = np.ones(dummy_tth.shape)
self.geometry = AzimuthalIntegrator()
self.geometry.setFit2D(directDist=detector_distance,
centerX=center_x,
centerY=center_y,
tilt=tilt,
tiltPlanRotation=rotation,
pixelX=pixel_size,
pixelY=pixel_size)
self.geometry.wavelength = wavelength / 1e10
self.dummy_img = self.geometry.calcfrom1d(dummy_tth, dummy_int, shape=image_shape, correctSolidAngle=True)
self.tth_array = self.geometry.twoThetaArray(image_shape)
self.azi_array = self.geometry.chiArray(image_shape)
def tearDown(self):
del self.tth_array
del self.azi_array
del self.dummy_img
del self.geometry
gc.collect()
def test_that_it_is_calculating_correctly(self):
cbn_correction = CbnCorrection(self.tth_array, self.azi_array,
diamond_thickness=2.2,
seat_thickness=5.3,
small_cbn_seat_radius=0.4,
large_cbn_seat_radius=1.95,
tilt=0,
tilt_rotation=0)
cbn_correction.update()
cbn_correction_data = cbn_correction.get_data()
self.assertGreater(np.sum(cbn_correction_data), 0)
self.assertEqual(cbn_correction_data.shape, self.dummy_img.shape)
示例6: AzimuthalIntegrator
# 需要导入模块: from pyFAI.azimuthalIntegrator import AzimuthalIntegrator [as 别名]
# 或者: from pyFAI.azimuthalIntegrator.AzimuthalIntegrator import twoThetaArray [as 别名]
#some initialization
dummy_tth = np.linspace(0, 35, 2000)
dummy_int = np.ones(dummy_tth.shape)
geometry = AzimuthalIntegrator()
geometry.setFit2D(directDist=detector_distance,
centerX=center_x,
centerY=center_y,
tilt=tilt,
tiltPlanRotation=rotation,
pixelX=pixel_size,
pixelY=pixel_size)
geometry.wavelength = wavelength/1e10
dummy_img = geometry.calcfrom1d(dummy_tth, dummy_int, shape=image_shape, correctSolidAngle=True)
tth_array = geometry.twoThetaArray(image_shape)
azi_array = geometry.chiArray(image_shape)
cbn_correction = CbnCorrection(tth_array, azi_array,
diamond_thickness=2.2,
seat_thickness=5.3,
small_cbn_seat_radius=0.4,
large_cbn_seat_radius=1.95,
tilt=0,
tilt_rotation=0)
t1= time.time()
cbn_correction.get_data()
print("It took {}s".format(time.time()-t1))
示例7: Refinment2D
# 需要导入模块: from pyFAI.azimuthalIntegrator import AzimuthalIntegrator [as 别名]
# 或者: from pyFAI.azimuthalIntegrator.AzimuthalIntegrator import twoThetaArray [as 别名]
class Refinment2D(object):
"""
refine the parameters from image itself ...
(Jerome est-ce que tu peux elaborer un petit peu plus ???)
"""
def __init__(self, img, ai=None):
"""
@param img: raw image we are working on
@type img: ndarray
@param ai: azimuhal integrator we are working on
@type ai: pyFAI.azimuthalIntegrator.AzimutalIntegrator
"""
self.img = img
if ai is None:
self.ai = AzimuthalIntegrator()
else:
self.ai = ai
def get_shape(self):
return self.img.shape
shape = property(get_shape)
def reconstruct(self, tth, I):
"""
Reconstruct a perfect image according to 2th / I given in
input
@param tth: 2 theta array
@type tth: ndarray
@param I: intensity array
@type I: ndarray
@return: a reconstructed image
@rtype: ndarray
"""
return numpy.interp(self.ai.twoThetaArray(self.shape), tth, I)
def diff_tth_X(self, dx=0.1):
"""
Jerome peux-tu décrire de quoi il retourne ???
@param dx: ???
@type: float ???
@return: ???
@rtype: ???
"""
f = self.ai.getFit2D()
fp = f.copy()
fm = f.copy()
fm["centerX"] -= dx / 2.0
fp["centerX"] += dx / 2.0
ap = AzimuthalIntegrator()
am = AzimuthalIntegrator()
ap.setFit2D(**fp)
am.setFit2D(**fm)
dtthX = (ap.twoThetaArray(self.shape) - am.twoThetaArray(self.shape)) / dx
tth, I = self.ai.xrpd(self.img, max(self.shape))
dI = SGModule.getSavitzkyGolay(I, npoints=5, degree=2, order=1) / (tth[1] - tth[0])
dImg = self.reconstruct(tth, dI)
return (dtthX * dImg).sum()
def diff_tth_tilt(self, dx=0.1):
"""
idem ici ???
@param dx: ???
@type dx: float ???
@return: ???
@rtype: ???
"""
f = self.ai.getFit2D()
fp = f.copy()
fm = f.copy()
fm["tilt"] -= dx / 2.0
fp["tilt"] += dx / 2.0
ap = AzimuthalIntegrator()
am = AzimuthalIntegrator()
ap.setFit2D(**fp)
am.setFit2D(**fm)
dtthX = (ap.twoThetaArray(self.shape) - am.twoThetaArray(self.shape)) / dx
tth, I = self.ai.xrpd(self.img, max(self.shape))
dI = SGModule.getSavitzkyGolay(I, npoints=5, degree=2, order=1) / (tth[1] - tth[0])
dImg = self.reconstruct(tth, dI)
return (dtthX * dImg).sum()
def diff_Fit2D(self, axis="all", dx=0.1):
"""
???
@param axis: ???
@type axis: ???
@param dx: ???
@type dx: ???
@return: ???
@rtype: ???
#.........这里部分代码省略.........
示例8: CalibrationModel
# 需要导入模块: from pyFAI.azimuthalIntegrator import AzimuthalIntegrator [as 别名]
# 或者: from pyFAI.azimuthalIntegrator.AzimuthalIntegrator import twoThetaArray [as 别名]
#.........这里部分代码省略.........
return
def search_peaks_on_ring(self, ring_index, delta_tth=0.1, min_mean_factor=1,
upper_limit=55000, mask=None):
"""
This function is searching for peaks on an expected ring. It needs an initial calibration
before. Then it will search for the ring within some delta_tth and other parameters to get
peaks from the calibrant.
:param ring_index: the index of the ring for the search
:param delta_tth: search space around the expected position in two theta
:param min_mean_factor: a factor determining the minimum peak intensity to be picked up. it is based
on the mean value of the search area defined by delta_tth. Pick a large value
for larger minimum value and lower for lower minimum value. Therefore, a smaller
number is more prone to picking up noise. typical values like between 1 and 3.
:param upper_limit: maximum intensity for the peaks to be picked
:param mask: in case the image has to be masked from certain areas, it need to be given here. Default is None.
The mask should be given as an 2d array with the same dimensions as the image, where 1 denotes a
masked pixel and all others should be 0.
"""
self.reset_supersampling()
if not self.is_calibrated:
return
# transform delta from degree into radians
delta_tth = delta_tth / 180.0 * np.pi
# get appropriate two theta value for the ring number
tth_calibrant_list = self.calibrant.get_2th()
tth_calibrant = np.float(tth_calibrant_list[ring_index])
# get the calculated two theta values for the whole image
if self.spectrum_geometry._ttha is None:
tth_array = self.spectrum_geometry.twoThetaArray(self.img_model._img_data.shape)
else:
tth_array = self.spectrum_geometry._ttha
# create mask based on two_theta position
ring_mask = abs(tth_array - tth_calibrant) <= delta_tth
if mask is not None:
mask = np.logical_and(ring_mask, np.logical_not(mask))
else:
mask = ring_mask
# calculate the mean and standard deviation of this area
sub_data = np.array(self.img_model._img_data.ravel()[np.where(mask.ravel())], dtype=np.float64)
sub_data[np.where(sub_data > upper_limit)] = np.NaN
mean = np.nanmean(sub_data)
std = np.nanstd(sub_data)
# set the threshold into the mask (don't detect very low intensity peaks)
threshold = min_mean_factor * mean + std
mask2 = np.logical_and(self.img_model._img_data > threshold, mask)
mask2[np.where(self.img_model._img_data > upper_limit)] = False
size2 = mask2.sum(dtype=int)
keep = int(np.ceil(np.sqrt(size2)))
try:
sys.stdout = DummyStdOut
res = self.peak_search_algorithm.peaks_from_area(mask2, Imin=mean - std, keep=keep)
sys.stdout = sys.__stdout__
except IndexError:
res = []
# Store the result
示例9: CalibrationData
# 需要导入模块: from pyFAI.azimuthalIntegrator import AzimuthalIntegrator [as 别名]
# 或者: from pyFAI.azimuthalIntegrator.AzimuthalIntegrator import twoThetaArray [as 别名]
#.........这里部分代码省略.........
:param algorithm:
peak search algorithm used. Possible algorithms are 'Massif' and 'Blob'
:param mask:
if a mask is used during the process this is provided here as a 2d array for the image.
"""
if algorithm == 'Massif':
self.peak_search_algorithm = Massif(self.img_data._img_data)
elif algorithm == 'Blob':
if mask is not None:
self.peak_search_algorithm = BlobDetection(self.img_data._img_data * mask)
else:
self.peak_search_algorithm = BlobDetection(self.img_data._img_data)
self.peak_search_algorithm.process()
else:
return
def search_peaks_on_ring(self, peak_index, delta_tth=0.1, min_mean_factor=1,
upper_limit=55000, mask=None):
self.reset_supersampling()
if not self.is_calibrated:
return
# transform delta from degree into radians
delta_tth = delta_tth / 180.0 * np.pi
# get appropriate two theta value for the ring number
tth_calibrant_list = self.calibrant.get_2th()
tth_calibrant = np.float(tth_calibrant_list[peak_index])
# get the calculated two theta values for the whole image
if self.spectrum_geometry._ttha is None:
tth_array = self.spectrum_geometry.twoThetaArray(self.img_data._img_data.shape)
else:
tth_array = self.spectrum_geometry._ttha
# create mask based on two_theta position
ring_mask = abs(tth_array - tth_calibrant) <= delta_tth
if mask is not None:
mask = np.logical_and(ring_mask, np.logical_not(mask))
else:
mask = ring_mask
# calculate the mean and standard deviation of this area
sub_data = np.array(self.img_data._img_data.ravel()[np.where(mask.ravel())], dtype=np.float64)
sub_data[np.where(sub_data > upper_limit)] = np.NaN
mean = np.nanmean(sub_data)
std = np.nanstd(sub_data)
# set the threshold into the mask (don't detect very low intensity peaks)
threshold = min_mean_factor * mean + std
mask2 = np.logical_and(self.img_data._img_data > threshold, mask)
mask2[np.where(self.img_data._img_data > upper_limit)] = False
size2 = mask2.sum(dtype=int)
keep = int(np.ceil(np.sqrt(size2)))
try:
res = self.peak_search_algorithm.peaks_from_area(mask2, Imin=mean - std, keep=keep)
except IndexError:
res = []
# Store the result
if len(res):
self.points.append(np.array(res))