本文整理汇总了Python中pyFAI.azimuthalIntegrator.AzimuthalIntegrator.reset方法的典型用法代码示例。如果您正苦于以下问题:Python AzimuthalIntegrator.reset方法的具体用法?Python AzimuthalIntegrator.reset怎么用?Python AzimuthalIntegrator.reset使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pyFAI.azimuthalIntegrator.AzimuthalIntegrator
的用法示例。
在下文中一共展示了AzimuthalIntegrator.reset方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: CalibrationModel
# 需要导入模块: from pyFAI.azimuthalIntegrator import AzimuthalIntegrator [as 别名]
# 或者: from pyFAI.azimuthalIntegrator.AzimuthalIntegrator import reset [as 别名]
#.........这里部分代码省略.........
:param mask:
if a mask is used during the process this is provided here as a 2d array for the image.
"""
if algorithm == 'Massif':
self.peak_search_algorithm = Massif(self.img_model.get_raw_img_data())
elif algorithm == 'Blob':
if mask is not None:
self.peak_search_algorithm = BlobDetection(self.img_model.get_raw_img_data() * mask)
else:
self.peak_search_algorithm = BlobDetection(self.img_model.get_raw_img_data())
self.peak_search_algorithm.process()
else:
return
def search_peaks_on_ring(self, ring_index, delta_tth=0.1, min_mean_factor=1,
upper_limit=55000, mask=None):
"""
This function is searching for peaks on an expected ring. It needs an initial calibration
before. Then it will search for the ring within some delta_tth and other parameters to get
peaks from the calibrant.
:param ring_index: the index of the ring for the search
:param delta_tth: search space around the expected position in two theta
:param min_mean_factor: a factor determining the minimum peak intensity to be picked up. it is based
on the mean value of the search area defined by delta_tth. Pick a large value
for larger minimum value and lower for lower minimum value. Therefore, a smaller
number is more prone to picking up noise. typical values like between 1 and 3.
:param upper_limit: maximum intensity for the peaks to be picked
:param mask: in case the image has to be masked from certain areas, it need to be given here. Default is None.
The mask should be given as an 2d array with the same dimensions as the image, where 1 denotes a
masked pixel and all others should be 0.
"""
self.reset_supersampling()
if not self.is_calibrated:
return
# transform delta from degree into radians
delta_tth = delta_tth / 180.0 * np.pi
# get appropriate two theta value for the ring number
tth_calibrant_list = self.calibrant.get_2th()
tth_calibrant = np.float(tth_calibrant_list[ring_index])
# get the calculated two theta values for the whole image
if self.spectrum_geometry._ttha is None:
tth_array = self.spectrum_geometry.twoThetaArray(self.img_model._img_data.shape)
else:
tth_array = self.spectrum_geometry._ttha
# create mask based on two_theta position
ring_mask = abs(tth_array - tth_calibrant) <= delta_tth
if mask is not None:
mask = np.logical_and(ring_mask, np.logical_not(mask))
else:
mask = ring_mask
# calculate the mean and standard deviation of this area
sub_data = np.array(self.img_model._img_data.ravel()[np.where(mask.ravel())], dtype=np.float64)
sub_data[np.where(sub_data > upper_limit)] = np.NaN
mean = np.nanmean(sub_data)
std = np.nanstd(sub_data)
# set the threshold into the mask (don't detect very low intensity peaks)
threshold = min_mean_factor * mean + std
示例2: CalibrationData
# 需要导入模块: from pyFAI.azimuthalIntegrator import AzimuthalIntegrator [as 别名]
# 或者: from pyFAI.azimuthalIntegrator.AzimuthalIntegrator import reset [as 别名]
#.........这里部分代码省略.........
poni1=pyFAI_parameter['poni1'],
poni2=pyFAI_parameter['poni2'],
rot1=pyFAI_parameter['rot1'],
rot2=pyFAI_parameter['rot2'],
rot3=pyFAI_parameter['rot3'],
pixel1=pyFAI_parameter['pixel1'],
pixel2=pyFAI_parameter['pixel2'])
self.cake_geometry.wavelength = pyFAI_parameter['wavelength']
def setup_peak_search_algorithm(self, algorithm, mask=None):
"""
Initializes the peak search algorithm on the current image
:param algorithm:
peak search algorithm used. Possible algorithms are 'Massif' and 'Blob'
:param mask:
if a mask is used during the process this is provided here as a 2d array for the image.
"""
if algorithm == 'Massif':
self.peak_search_algorithm = Massif(self.img_data._img_data)
elif algorithm == 'Blob':
if mask is not None:
self.peak_search_algorithm = BlobDetection(self.img_data._img_data * mask)
else:
self.peak_search_algorithm = BlobDetection(self.img_data._img_data)
self.peak_search_algorithm.process()
else:
return
def search_peaks_on_ring(self, peak_index, delta_tth=0.1, min_mean_factor=1,
upper_limit=55000, mask=None):
self.reset_supersampling()
if not self.is_calibrated:
return
# transform delta from degree into radians
delta_tth = delta_tth / 180.0 * np.pi
# get appropriate two theta value for the ring number
tth_calibrant_list = self.calibrant.get_2th()
tth_calibrant = np.float(tth_calibrant_list[peak_index])
# get the calculated two theta values for the whole image
if self.spectrum_geometry._ttha is None:
tth_array = self.spectrum_geometry.twoThetaArray(self.img_data._img_data.shape)
else:
tth_array = self.spectrum_geometry._ttha
# create mask based on two_theta position
ring_mask = abs(tth_array - tth_calibrant) <= delta_tth
if mask is not None:
mask = np.logical_and(ring_mask, np.logical_not(mask))
else:
mask = ring_mask
# calculate the mean and standard deviation of this area
sub_data = np.array(self.img_data._img_data.ravel()[np.where(mask.ravel())], dtype=np.float64)
sub_data[np.where(sub_data > upper_limit)] = np.NaN
mean = np.nanmean(sub_data)
std = np.nanstd(sub_data)
# set the threshold into the mask (don't detect very low intensity peaks)
threshold = min_mean_factor * mean + std