本文整理汇总了Python中pthelma.timeseries.Timeseries.write_to_db方法的典型用法代码示例。如果您正苦于以下问题:Python Timeseries.write_to_db方法的具体用法?Python Timeseries.write_to_db怎么用?Python Timeseries.write_to_db使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pthelma.timeseries.Timeseries
的用法示例。
在下文中一共展示了Timeseries.write_to_db方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: MultiTimeseriesProcessDb
# 需要导入模块: from pthelma.timeseries import Timeseries [as 别名]
# 或者: from pthelma.timeseries.Timeseries import write_to_db [as 别名]
def MultiTimeseriesProcessDb(method, timeseries_arg, out_timeseries_id,
db, read_tstep_func, transaction=None,
commit=True, options={}):
out_timeseries = Timeseries(id = out_timeseries_id)
opts = copy.deepcopy(options)
if 'append_only' in opts and opts['append_only']:
bounds = timeseries_bounding_dates_from_db(db,
id = out_timeseries_id)
opts['start_date'] = bounds[1] if bounds else None;
opts['interval_exclusive'] = True
tseries_arg={}
for key in timeseries_arg:
ts = Timeseries(id=timeseries_arg[key])
if ('append_only' in opts and opts['append_only']) \
and opts['start_date'] is not None:
ts.read_from_db(db, bottom_only=True)
if ts.bounding_dates()[0]>opts['start_date']:
ts.read_from_db(db)
else:
ts.read_from_db(db)
ts.time_step = read_tstep_func(ts.id)
tseries_arg[key] = ts
MultiTimeseriesProcess(method, tseries_arg, out_timeseries, opts)
if 'append_only' in opts and opts['append_only']:
out_timeseries.append_to_db(db=db, transaction=transaction,
commit=commit)
else:
out_timeseries.write_to_db(db=db, transaction=transaction,
commit=commit)
示例2: process_dma
# 需要导入模块: from pthelma.timeseries import Timeseries [as 别名]
# 或者: from pthelma.timeseries.Timeseries import write_to_db [as 别名]
def process_dma(dma, bounds):
"""Process DMA timeseries by aggregating all the contained
households in the DMA"""
print "Process DMA %s" % (dma,)
for dma_series in dma.timeseries.all():
print "Process series %s" % (dma_series,)
per_capita = dma_series.name.find('capita') > -1
variable = dma_series.variable.id
if dma_series.time_step.id == TSTEP_FIFTEEN_MINUTES:
start = bounds[variable]['fifteen_start']
end = bounds[variable]['fifteen_end']
# Fifteen minutes process is DEACTIVATED!
# We don't process fifteen minutes, it takes too long,
# maybe we reactivate later after we optimize the
# algorithm to process only new records
continue
elif dma_series.time_step.id == TSTEP_HOURLY:
start = bounds[variable]['hourly_start']
end = bounds[variable]['hourly_end']
elif dma_series.time_step.id == TSTEP_DAILY:
start = bounds[variable]['daily_start']
end = bounds[variable]['daily_end']
elif dma_series.time_step.id == TSTEP_MONTHLY:
start = bounds[variable]['monthly_start']
end = bounds[variable]['monthly_end']
time_step = ReadTimeStep(dma_series.id, dma_series)
tseries = TSeries(time_step = time_step, id=dma_series.id)
nhseries = TSeries(time_step = time_step)
pointer = start
while pointer<=end:
tseries[pointer] = 0
nhseries[pointer] = 0
pointer = tseries.time_step.next(pointer)
for household in dma.households.all():
for h_series_db in household.timeseries.filter(
time_step__id=dma_series.time_step.id,
variable__id=variable):
hseries = TSeries(id=h_series_db.id)
hseries.read_from_db(db.connection)
pointer = start
while pointer<=end:
try:
v = hseries[pointer]
if math.isnan(v):
pointer = tseries.time_step.next(pointer)
continue
if per_capita:
v = v/float(household.num_of_occupants)
tseries[pointer] += v
nhseries[pointer] += 1
except KeyError:
v = 0
pointer = tseries.time_step.next(pointer)
pointer = start
while pointer<=end:
if per_capita and nhseries[pointer]>0:
tseries[pointer] = tseries[pointer] / nhseries[pointer]
pointer = tseries.time_step.next(pointer)
tseries.write_to_db(db.connection, commit=True)#False)
示例3: create_objects
# 需要导入模块: from pthelma.timeseries import Timeseries [as 别名]
# 或者: from pthelma.timeseries.Timeseries import write_to_db [as 别名]
def create_objects(dma, household_identifier, series, force=False):
"""
When a household is fully parsed then this command is called to create
database objects thus: user (household owner), household, database time
series placeholders (for raw data and for processed data), to write actual
time series data in database and finally to estimate the household
occupancy.
"""
print "Processing household %s, user username will be %s as well"%(
household_identifier, household_identifier)
# Create user (household owner), household, database series placeholders
user = create_user(household_identifier)
household=create_household(household_identifier, user,
zone=dma.id)
db_series = create_raw_timeseries(household)
create_processed_timeseries(household)
timeseries_data = {}
# Now we will create timeseries.Timeseries() and we will add
# parsed values
for variable in db_series:
if variable not in ('WaterCold', 'Electricity'):
continue
s, e = timeseries_bounding_dates_from_db(db.connection,
db_series[variable].id)
if not force and (s or e):
print 'Raw timeseries id=%s has already data, skipping...'%(
db_series[variable].id,)
continue
timeseries = TSeries()
timeseries.id = db_series[variable].id
total = 0.0
for timestamp, value in series[variable]:
if not math.isnan(value):
total += value
timeseries[timestamp] = total
else:
timeseries[timestamp] = float('NaN')
timeseries_data[variable] = timeseries
timeseries.write_to_db(db=db.connection,
transaction=transaction,
commit=False)
if 'WaterCold' in timeseries_data:
calc_occupancy(timeseries_data['WaterCold'], household)
示例4: parse_and_save_timeseries
# 需要导入模块: from pthelma.timeseries import Timeseries [as 别名]
# 或者: from pthelma.timeseries.Timeseries import write_to_db [as 别名]
def parse_and_save_timeseries(device_id, timeseries_id):
"""
Reads a RAW timeseries from REST API and saves in our local
database using the timeseries_id.
``device_id`` will be the ``identifier`` used in other functions,
usualy is the customerID==deviceID
"""
s, e = timeseries_bounding_dates_from_db(db.connection,
timeseries_id)
if s or e:
print 'Raw timeseries id=%s has already data, skipping...'%(
timeseries_id,)
return
timeseries = TSeries()
timeseries.id = timeseries_id
for timestamp, value in ibm_restapi.get_raw_timeseries(device_id):
timeseries[timestamp] = value
timeseries.write_to_db(db=db.connection,
transaction=transaction,
commit=False)
示例5: parse_and_save_timeseries
# 需要导入模块: from pthelma.timeseries import Timeseries [as 别名]
# 或者: from pthelma.timeseries.Timeseries import write_to_db [as 别名]
def parse_and_save_timeseries(filename, timeseries_id):
first_line = True
timeseries = TSeries()
timeseries.id = timeseries_id
with open(filename) as fp:
for line in fp.readlines():
if first_line:
first_line = False
continue
components = line.split(',')
date_str = components[1].strip('"')
value_str = components[2].strip('"')
value = float(value_str)
if value<MIN_VALUE or value>=MAX_VALUE:
value = float('nan')
tstamp = datetime.strptime(date_str, '%Y-%m-%d %H:%M:%S')
tstamp = tstamp.replace(second=0)
timeseries[tstamp] = value
timeseries.write_to_db(db=db.connection,
transaction=transaction,
commit=False)
示例6: regularize_raw_series
# 需要导入模块: from pthelma.timeseries import Timeseries [as 别名]
# 或者: from pthelma.timeseries.Timeseries import write_to_db [as 别名]
def regularize_raw_series(raw_series_db, proc_series_db, rs, re, ps, pe ):
"""
This function regularize raw_series_db object from database and
writes a processed proc_series_db in database.
Raw series is a continuously increasing values time series,
aggregating the water consumption. Resulting processed timeseries
contains water consumption for each of its interval. I.e. if the
timeseries is of 15 minutes time step, then each record contains
the water consumption for each record period.
"""
raw_series = TSeries(id=raw_series_db.id)
raw_series.read_from_db(db.connection)
# We keep the last value for x-checking reasons, see last print
# command
test_value = raw_series[raw_series.bounding_dates()[1]]
time_step = ReadTimeStep(proc_series_db.id, proc_series_db)
proc_series = TSeries(id=proc_series_db.id, time_step = time_step)
# The following code can be used in real conditions to append only
# new records to db, in a next version
#if not pe:
# start = proc_series.time_step.down(rs)
#else:
# start = proc_series.time_step.up(pe)
# Instead of the above we use now:
start = proc_series.time_step.down(rs)
end = proc_series.time_step.up(re)
pointer = start
# Pass 1: Initialize proc_series
while pointer<=end:
proc_series[pointer] = float('nan')
pointer = proc_series.time_step.next(pointer)
# Pass 2: Transfer cummulative raw series to differences series:
prev_s = 0
for i in xrange(len(raw_series)):
dat, value = raw_series.items(pos=i)
if not math.isnan(value):
raw_series[dat] = value-prev_s
prev_s = value
# Pass 3: Regularize step: loop over raw series records and distribute
# floating point values to processed series
for i in xrange(len(raw_series)):
dat, value = raw_series.items(pos=i)
if not math.isnan(value):
# find previous, next timestamp of the proc time series
d1 = proc_series.time_step.down(dat)
d2 = proc_series.time_step.up(dat)
if math.isnan(proc_series[d1]): proc_series[d1] = 0
if math.isnan(proc_series[d2]): proc_series[d2] = 0
if d1==d2: # if dat on proc step then d1=d2
proc_series[d1] += value
continue
dif1 = _dif_in_secs(d1, dat)
dif2 = _dif_in_secs(dat, d2)
dif = dif1+dif2
# Distribute value to d1, d2
proc_series[d1] += (dif2/dif)*value
proc_series[d2] += (dif1/dif)*value
# Uncomment the following line in order to show debug information.
# Usually the three following sums are consistent by equality. If
# not equality is satisfied then there is a likelyhood of algorith
# error
print raw_series.sum(), proc_series.sum(), test_value
proc_series.write_to_db(db=db.connection, commit=True) #False)
#return the full timeseries
return proc_series
示例7: create_objects
# 需要导入模块: from pthelma.timeseries import Timeseries [as 别名]
# 或者: from pthelma.timeseries.Timeseries import write_to_db [as 别名]
def create_objects(data, usernames, force, z_names, z_dict):
"""
:param data: meter_id -> consumption_type -> [timestamp, volume]
:param force: True to overwrite
:return: True for success
"""
households = []
# Create user (household owner), household, database series placeholders
hh_ids = sorted(data.keys())
found = False
for hh_id in hh_ids:
username = usernames[hh_id]
if username == "PT94993":
pass
try:
zone_name = z_dict[username]
except KeyError:
zone_name = z_names[0]
zone = DMA.objects.get(name=zone_name)
user, created = create_user(username, hh_id)
household, found = create_household(hh_id, user, zone.id)
households.append(household)
db_series = create_raw_timeseries(household)
create_processed_timeseries(household)
timeseries_data = {}
# Now we will create timeseries.Timeseries() and we will add
# parsed values
for variable in db_series:
if variable not in ('WaterCold', 'Electricity'):
continue
exists = False
s, e = timeseries_bounding_dates_from_db(db.connection,
db_series[variable].id)
latest_ts = e
ts_id = db_series[variable].id
# checking to see if timeseries records already exist in order
# to append
# d = read_timeseries_tail_from_db(db.connection, ts_id)
total = 0.0
# if s or e:
# exists = True
# timeseries = TSeries(ts_id)
# timeseries.read_from_db(db.connection)
# else:
# timeseries = TSeries()
# timeseries.id = ts_id
_dict = data[hh_id]
arr = _dict[variable]
series = arr
if not series:
continue
earlier = []
if (not latest_ts) or (latest_ts < series[0][0]): # append
timeseries = TSeries()
timeseries.id = ts_id
try:
tail = read_timeseries_tail_from_db(db.connection, ts_id)
total = float(tail[1]) # keep up from last value
except Exception as e:
log.debug(repr(e))
total = 0
for timestamp, value in series:
if (not latest_ts) or (timestamp > latest_ts):
if not isnan(value):
total += value
timeseries[timestamp] = total
else:
timeseries[timestamp] = float('NaN')
elif timestamp < latest_ts:
earlier.append((timestamp, value))
timeseries.append_to_db(db=db.connection,
transaction=transaction,
commit=True)
elif latest_ts >= series[0][0]:
if not force: # ignore
continue
else: # insert
for timestamp, value in series:
if timestamp < latest_ts:
earlier.append((timestamp, value))
if earlier and ("GR" in username or "GBA" in username): # insert (only for athens)
# print "appending %s items for %s" % (len(earlier), username)
if variable == "WaterCold":
ts15 = household \
.timeseries.get(time_step__id=TSTEP_FIFTEEN_MINUTES,
variable__id=VAR_PERIOD)
series15 = TSeries(id=ts15.id)
elif variable == "Electricity":
ts15 = household \
.timeseries.get(time_step__id=TSTEP_FIFTEEN_MINUTES,
variable__id=VAR_ENERGY_PERIOD)
series15 = TSeries(id=ts15.id)
series15.read_from_db(db.connection)
for ts, value in earlier:
series15[ts] = value
series15.write_to_db(db=db.connection,
transaction=transaction,
commit=True)
#.........这里部分代码省略.........
示例8: Timeseries
# 需要导入模块: from pthelma.timeseries import Timeseries [as 别名]
# 或者: from pthelma.timeseries.Timeseries import write_to_db [as 别名]
Assuming that "dir" is the openmeteo directory, run as follows:
export PYTHONPATH=dir:dir/enhydris
export DJANGO_SETTINGS=settings
./oldopenmeteo2enhydris.sql
"""
import sys
from datetime import timedelta
from django.db import connection, transaction
from enhydris.hcore import models
from pthelma.timeseries import Timeseries
transaction.enter_transaction_management()
tms = models.Timeseries.objects.filter(time_step__id__in=[4,5])
for tm in tms:
sys.stderr.write("Doing timeseries %d..." % (tm.id,))
t = Timeseries(id=tm.id)
nt = Timeseries(id=tm.id)
t.read_from_db(connection)
for (d, value) in t.items():
d += timedelta(hours=1)
assert(not d.minute and not d.hour and not d.second and d.day==1,
"Invalid date "+str(d))
nt[d] = value
nt.write_to_db(connection, transaction=transaction, commit=False)
sys.stderr.write(" Done\n")
transaction.commit()