当前位置: 首页>>代码示例>>Python>>正文


Python Timeseries.keys方法代码示例

本文整理汇总了Python中pthelma.timeseries.Timeseries.keys方法的典型用法代码示例。如果您正苦于以下问题:Python Timeseries.keys方法的具体用法?Python Timeseries.keys怎么用?Python Timeseries.keys使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pthelma.timeseries.Timeseries的用法示例。


在下文中一共展示了Timeseries.keys方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: handle

# 需要导入模块: from pthelma.timeseries import Timeseries [as 别名]
# 或者: from pthelma.timeseries.Timeseries import keys [as 别名]
 def handle(self, *args, **options):
     try:
         username = args[0]
     except IndexError:
         print "I need a username!"
         return -1
     try:
         if username:
             user = User.objects.get(username=username)
             out = []
             print "output for {x}".format(x=username)
             household = Household.objects.get(user=user)
             timeseries = household \
                 .timeseries.get(time_step__id=TSTEP_FIFTEEN_MINUTES,
                                 variable__id=VAR_PERIOD)
             series = TSeries(id=timeseries.id)
             series.read_from_db(db.connection)
             timestamps = sorted(series.keys())
             values = np.array([])
             for ts in timestamps:
                 val = series[ts]
                 if isnan(val) or val == 0:
                     continue
                 values = np.append(values, val)
                 perc = np.percentile(values, 90)
                 out.append([ts, val, perc])
             _outfile = "timeseries_%s.csv" % username
             _path = "data/"
             with open(path.join(_path, _outfile), 'w') as of:
                 a = csv.writer(of, delimiter=',',
                                quotechar='"',
                                quoting=csv.QUOTE_ALL)
                 a.writerows(out)
     except Exception as e:
         print "failed with %s" % repr(e)
开发者ID:xpanta,项目名称:enhydris,代码行数:37,代码来源:export_ts.py

示例2: update_ts_temp_file

# 需要导入模块: from pthelma.timeseries import Timeseries [as 别名]
# 或者: from pthelma.timeseries.Timeseries import keys [as 别名]
def update_ts_temp_file(cache_dir, connection, id):
    full_rewrite = False

    afilename = os.path.join(cache_dir, '%d.hts'%(id,))
    if os.path.exists(afilename):
        if os.path.getsize(afilename)<3:
            full_rewrite = True
#Update the file in the case of logged data, if this is possible
    if os.path.exists(afilename) and not full_rewrite:
        with open(afilename, 'r') as fileobject:
            xr = xreverse(fileobject, 2048)
            line = xr.next()
        lastdate = datetime_from_iso(line.split(',')[0])
        ts = Timeseries(id)
        ts.read_from_db(connection, bottom_only=True)
        if len(ts)>0:
            db_start, db_end = ts.bounding_dates()
            if db_start>lastdate:
                full_rewrite = True
            elif db_end>lastdate:
                lastindex = ts.index(lastdate)
                with open(afilename, 'a') as fileobject:
                    ts.write(fileobject, start=ts.keys()[lastindex+1])
#Check for tmmp file or else create it
    if not os.path.exists(afilename) or full_rewrite:
        ts = Timeseries(id)
        ts.read_from_db(connection)
        if not os.path.exists(cache_dir):
            os.mkdir(cache_dir)
        tempfile_handle, tempfile_name = tempfile.mkstemp(dir=cache_dir)
        with os.fdopen(tempfile_handle, 'w') as afile:
            ts.write(afile)
        shutil.move(tempfile_name, afilename)
开发者ID:xpanta,项目名称:enhydris,代码行数:35,代码来源:tstmpupd.py

示例3: get_consumption_totals

# 需要导入模块: from pthelma.timeseries import Timeseries [as 别名]
# 或者: from pthelma.timeseries.Timeseries import keys [as 别名]
def get_consumption_totals(household, dt, variable):
    """
    Not needed. read_timeseries_tail_from_db does the same thing, faster.
    :param household:
    :return:
    """
    if variable == "WaterCold":
        timeseries = household \
            .timeseries.get(variable__id=VAR_CUMULATIVE)
        raw_series = TSeries(id=timeseries.id)
        raw_series.read_from_db(db.connection)
        timestamps = sorted(raw_series.keys())
        total = 0
        for ts in timestamps:
            val = raw_series[ts]
            if isnan(val):
                continue
            if ts > dt:
                break
            total = raw_series[ts]
        return total
    elif variable == "Electricity":
        timeseries = household \
            .timeseries.get(variable__id=VAR_ENERGY_CUMULATIVE)
        raw_series = TSeries(id=timeseries.id)
        raw_series.read_from_db(db.connection)
        timestamps = sorted(raw_series.keys())
        total = 0
        for ts in timestamps:
            val = raw_series[ts]
            if isnan(val):
                continue
            if ts > dt:
                break
            total = raw_series[ts]
        return total
开发者ID:xpanta,项目名称:enhydris,代码行数:38,代码来源:_commonlib.py

示例4: has_burst_old

# 需要导入模块: from pthelma.timeseries import Timeseries [as 别名]
# 或者: from pthelma.timeseries.Timeseries import keys [as 别名]
def has_burst_old(household):
    """
    We won't be using this algorithm any more
    :param household:
    :return:
    """
    name = household.user.username
    if not name.startswith('GR'):
        return 0, 0
    timeseries = household \
        .timeseries.get(time_step__id=TSTEP_FIFTEEN_MINUTES,
                        variable__id=VAR_PERIOD)
    series = TSeries(id=timeseries.id)
    series.read_from_db(db.connection)
    timestamps = sorted(series.keys())
    today = []  # all today's values
    _all = []
    for i in range(1, len(timestamps)):
        ts = timestamps[i]
        if household.user.username == "GR006047" \
                and ts.year == 2015 and ts.month == 2 and ts.day == 9 \
                and ts.hour == 17:
            pass
        prev_ts = timestamps[i-1]
        # if previous value is NaN we don't take this value into consideration
        # Because it might have all consumption of all the previous NaN times
        val = series[ts]
        prev_val = series[prev_ts]
        if isnan(prev_val):
            continue
        if i < len(timestamps) - 100:
            if not isnan(val) and not val == 0:
                _all.append(series[ts])
        else:
            tm = "%s:%s" % (ts.time().hour, ts.time().minute)
            if not isnan(val) and not val == 0:
                today.append((val, tm))

    if _all and today:
        all1 = np.array(_all)
        p = np.percentile(all1, 95)
        for cons, tm in today:
            if cons > p:
                return cons, tm
    return 0, 0
开发者ID:xpanta,项目名称:enhydris,代码行数:47,代码来源:_commonlib.py

示例5: has_burst

# 需要导入模块: from pthelma.timeseries import Timeseries [as 别名]
# 或者: from pthelma.timeseries.Timeseries import keys [as 别名]
def has_burst(household):
    """
    We won't be using this algorithm any more
    :param household:
    :return:
    """
    name = household.user.username
    if not name.startswith('GR'):
        return 0, 0
    timeseries = household \
        .timeseries.get(time_step__id=TSTEP_FIFTEEN_MINUTES,
                        variable__id=VAR_PERIOD)
    series = TSeries(id=timeseries.id)
    series.read_from_db(db.connection)
    timestamps = sorted(series.keys())
    today = []  # all today's values
    daily_maxes = {}
    for i in range(1, len(timestamps)):
        ts = timestamps[i]
        prev_ts = timestamps[i-1]
        date = ts.date()
        # if previous value is NaN we don't take this value into consideration
        # Because it might have all consumption of all the previous NaN times
        val = series[ts]
        prev_val = series[prev_ts]
        if isnan(prev_val):
            continue
        if i < len(timestamps) - 100:
            if not isnan(val) and not val == 0:
                daily_max = daily_maxes.get(date, 0)
                if val > daily_max:
                    daily_maxes[date] = val
        else:
            tm = "%s-%s-%s %s:%s" % (ts.year, ts.month, ts.day,
                                     ts.time().hour, ts.time().minute)
            if not isnan(val) and not val == 0:
                today.append((val, tm))

    if daily_maxes and today:
        maxes = np.array(daily_maxes.values())
        p = np.percentile(maxes, 90)
        for cons, tm in today:
            if cons > p:
                return cons, tm
    return 0, 0
开发者ID:xpanta,项目名称:enhydris,代码行数:47,代码来源:_commonlib.py

示例6: get_values_after

# 需要导入模块: from pthelma.timeseries import Timeseries [as 别名]
# 或者: from pthelma.timeseries.Timeseries import keys [as 别名]
def get_values_after(household, dt, variable):
    timeseries = None
    if variable == "WaterCold":
        timeseries = household \
            .timeseries.get(time_step__id=TSTEP_FIFTEEN_MINUTES,
                            variable__id=VAR_PERIOD)
    elif variable == "Electricity":
        timeseries = household \
            .timeseries.get(time_step__id=TSTEP_FIFTEEN_MINUTES,
                            variable__id=VAR_ENERGY_PERIOD)
    data = []
    if timeseries:
        series = TSeries(id=timeseries.id)
        series.read_from_db(db.connection)
        timestamps = sorted(series.keys())
        for ts in timestamps:
            val = series[ts]
            if ts <= dt:
                continue
            data.append((ts, val))
    return data
开发者ID:xpanta,项目名称:enhydris,代码行数:23,代码来源:_commonlib.py

示例7: handle

# 需要导入模块: from pthelma.timeseries import Timeseries [as 别名]
# 或者: from pthelma.timeseries.Timeseries import keys [as 别名]
 def handle(self, *args, **options):
     try:
         username = args[0]
     except IndexError:
         print "I need a username!"
         return -1
     try:
         if username not in ["GR", "GB", "PT", "GBA"]:
             users = User.objects.filter(username=username)
         else:
             users = User.objects.filter(username__startswith=username)
         for user in users:
             out = []
             print "output for {x}".format(x=username)
             household = Household.objects.get(user=user)
             # ts_raw = household.timeseries.filter(time_step__isnull=True,
             #                                      variable__id=VAR_CUMULATIVE)[0]
             # series = TSeries(id=ts_raw.id)
             timeseries = household \
                 .timeseries.get(variable__id=VAR_CUMULATIVE)
             series = TSeries(id=timeseries.id)
             series.read_from_db(db.connection)
             timestamps = sorted(series.keys())
             values = np.array([])
             for ts in timestamps:
                 val = series[ts]
                 if isnan(val) or val == 0:
                     continue
                 values = np.append(values, val)
                 #perc = np.percentile(values, 90)
                 out.append([ts, val])
             _outfile = "timeseries_cumulative_%s.csv" % user.username
             _path = "data/"
             with open(path.join(_path, _outfile), 'w') as of:
                 a = csv.writer(of, delimiter=',',
                                quotechar='"',
                                quoting=csv.QUOTE_ALL)
                 a.writerows(out)
     except Exception as e:
         print "failed with %s" % repr(e)
开发者ID:xpanta,项目名称:enhydris,代码行数:42,代码来源:export_cumul_ts.py

示例8: has_leakage

# 需要导入模块: from pthelma.timeseries import Timeseries [as 别名]
# 或者: from pthelma.timeseries.Timeseries import keys [as 别名]
def has_leakage(household):
    """
    This method checks for leakages. The way it is done is pretty simple
     I open the hourly timeseries and retrieve all timestamps.
     I create a dictionary with keys be the dates (not time) and values arrays
     be the percentage of night/total consumption
    :param household:
    :return: False for no leakage, True for leakage
    """
    name = household.user.username
    if name == "GR059E35":
        pass
    if name.startswith('GB'):  # not UK because they send daily data
        return 0, 0
    timeseries = household \
        .timeseries.get(time_step__id=TSTEP_HOURLY,
                        variable__id=VAR_PERIOD)
    series = TSeries(id=timeseries.id)
    series.read_from_db(db.connection)
    timestamps = sorted(series.keys())
    night_dict = {}
    total_dict = {}
    _t = datetime.now().time()
    _d = datetime.today().date()
    for ts in timestamps:
        _d = ts.date()
        _t = ts.time()
        val = series[ts]
        if 3 <= _t.hour <= 5:
            if val == 0:
                night_dict[_d] = 0  # make all night 0 if one 0
            else:
                try:
                    night_dict[_d] += val
                except KeyError:
                    night_dict[_d] = val
        try:
            total_dict[_d] += val
        except KeyError:
            total_dict[_d] = val

    #remove last day if not a whole day (_t < 24:00)
    if _t.hour < 23:
        try:
            del total_dict[_d]
            del night_dict[_d]
        except (KeyError, IndexError):
            pass
    _all = []  # all lengths will be in here
    _today = []  # today's lengths

    _dates = sorted(total_dict.keys())[:-1]  # all except last day 4 * 15min for 4 hrs
    for _d in _dates:
        total = total_dict[_d]
        # there can be a case when I don't get data for 01:00 -> 04:00
        # so night[_d] might not exist. in this case let it be zero
        try:
            night = night_dict[_d]
        except KeyError:
            night = 0
        if total > 0 and night > 0 and not isnan(total) and not isnan(night):
            _all.append(float(night) / float(total))

    # Now we need only the last day. However sometimes we have
    # some timestamps from the next day because the file has all data from
    # previous day and one entry from today. So we pick today and yesterday
    # instead of today. Today is too small. And too fast some times. But that
    # is for some other time to discuss...
    _dates = sorted(total_dict.keys())[-1:]  # only last day's
    for _d in _dates:
        total = total_dict[_d]
        night = night_dict[_d]
        if total > 0 and night > 0 and not isnan(total) and not isnan(night):
            _today.append(float(night) / float(total))
    if _all and _today:
        ts = timestamps[-1]
        tm = "%s-%s-%s %s:%s" % (ts.year, ts.month, ts.day,
                                 ts.time().hour, ts.time().minute)
        all1 = np.array(_all)
        p = np.percentile(all1, 90)
        for val in _today:
            if val > p:
                return val, tm
    return 0, 0
开发者ID:xpanta,项目名称:enhydris,代码行数:86,代码来源:_commonlib.py

示例9: create_objects

# 需要导入模块: from pthelma.timeseries import Timeseries [as 别名]
# 或者: from pthelma.timeseries.Timeseries import keys [as 别名]
def create_objects(data, usernames, force, z_names, z_dict):
    """

    :param data: meter_id -> consumption_type -> [timestamp, volume]
    :param force: True to overwrite
    :return: True for success
    """
    households = []
    # Create user (household owner), household, database series placeholders
    hh_ids = sorted(data.keys())
    found = False
    for hh_id in hh_ids:
        username = usernames[hh_id]
        if username == "PT94993":
            pass
        try:
            zone_name = z_dict[username]
        except KeyError:
            zone_name = z_names[0]
        zone = DMA.objects.get(name=zone_name)
        user, created = create_user(username, hh_id)
        household, found = create_household(hh_id, user, zone.id)
        households.append(household)
        db_series = create_raw_timeseries(household)
        create_processed_timeseries(household)
        timeseries_data = {}
        # Now we will create timeseries.Timeseries() and we will add
        # parsed values
        for variable in db_series:
            if variable not in ('WaterCold', 'Electricity'):
                continue
            exists = False
            s, e = timeseries_bounding_dates_from_db(db.connection,
                                                     db_series[variable].id)
            latest_ts = e
            ts_id = db_series[variable].id
            # checking to see if timeseries records already exist in order
            # to append
            # d = read_timeseries_tail_from_db(db.connection, ts_id)
            total = 0.0
            # if s or e:
            #     exists = True
            #     timeseries = TSeries(ts_id)
            #     timeseries.read_from_db(db.connection)
            # else:
            #     timeseries = TSeries()
            #     timeseries.id = ts_id
            _dict = data[hh_id]
            arr = _dict[variable]
            series = arr
            if not series:
                continue
            earlier = []
            if (not latest_ts) or (latest_ts < series[0][0]):  # append
                timeseries = TSeries()
                timeseries.id = ts_id
                try:
                    tail = read_timeseries_tail_from_db(db.connection, ts_id)
                    total = float(tail[1])  # keep up from last value
                except Exception as e:
                    log.debug(repr(e))
                    total = 0
                for timestamp, value in series:
                    if (not latest_ts) or (timestamp > latest_ts):
                        if not isnan(value):
                            total += value
                            timeseries[timestamp] = total
                        else:
                            timeseries[timestamp] = float('NaN')
                    elif timestamp < latest_ts:
                        earlier.append((timestamp, value))
                timeseries.append_to_db(db=db.connection,
                                        transaction=transaction,
                                        commit=True)
            elif latest_ts >= series[0][0]:
                if not force:  # ignore
                    continue
                else:  # insert
                    for timestamp, value in series:
                        if timestamp < latest_ts:
                            earlier.append((timestamp, value))
            if earlier and ("GR" in username or "GBA" in username):  # insert (only for athens)
                # print "appending %s items for %s" % (len(earlier), username)
                if variable == "WaterCold":
                    ts15 = household \
                        .timeseries.get(time_step__id=TSTEP_FIFTEEN_MINUTES,
                                        variable__id=VAR_PERIOD)
                    series15 = TSeries(id=ts15.id)
                elif variable == "Electricity":
                    ts15 = household \
                        .timeseries.get(time_step__id=TSTEP_FIFTEEN_MINUTES,
                                        variable__id=VAR_ENERGY_PERIOD)
                    series15 = TSeries(id=ts15.id)
                series15.read_from_db(db.connection)
                for ts, value in earlier:
                    series15[ts] = value
                series15.write_to_db(db=db.connection,
                                     transaction=transaction,
                                     commit=True)

#.........这里部分代码省略.........
开发者ID:xpanta,项目名称:enhydris,代码行数:103,代码来源:_commonlib.py


注:本文中的pthelma.timeseries.Timeseries.keys方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。