本文整理汇总了Python中prov.model.ProvDocument.get_provn方法的典型用法代码示例。如果您正苦于以下问题:Python ProvDocument.get_provn方法的具体用法?Python ProvDocument.get_provn怎么用?Python ProvDocument.get_provn使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类prov.model.ProvDocument
的用法示例。
在下文中一共展示了ProvDocument.get_provn方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: NIDMObjectsUnitTesting
# 需要导入模块: from prov.model import ProvDocument [as 别名]
# 或者: from prov.model.ProvDocument import get_provn [as 别名]
class NIDMObjectsUnitTesting(unittest.TestCase):
"""
Unit testing of NIDM objects (compared to examples provided in
nidm-results.owl)
"""
def setUp(self):
self.export_dir = os.path.join(TEST_FOLDER, 'nidm')
if not os.path.isdir(self.export_dir):
os.mkdir(self.export_dir)
# Retreive owl file for NIDM-Results
owl_file = os.path.join(TERM_RESULTS_DIR, 'nidm-results.owl')
assert owl_file
self.owl = OwlReader(owl_file)
self.doc = ProvDocument()
# self.bundle = ProvBundle(identifier=NIIRI[software_lc+'_results_id'])
self.provn_file = os.path.join(self.export_dir, 'unit_test.provn')
namespaces_file = os.path.join(TERM_RESULTS_DIR, "templates", \
"Namespaces.txt")
namespaces_fid = open(namespaces_file)
self.prefixes = namespaces_fid.read()
namespaces_fid.close()
self.to_delete_files = [self.provn_file]
self.gt_ttl_files = list()
def test_design_matrix(self):
mat = np.matrix('1 2; 3 4')
mat_image = os.path.join(os.path.dirname(TEST_FOLDER), "data", \
"fmri.feat", "design.png")
design_matrix = DesignMatrix(mat, mat_image, self.export_dir)
self.doc.update(design_matrix.export())
# In the FSL export the design matrix contains both the Design Matrix
# entity and the Image entity representing the design matrix
# visualisation.
self.to_delete_files.append(os.path.join(self.export_dir, \
"DesignMatrix.csv"))
self.to_delete_files.append(os.path.join(self.export_dir, \
"DesignMatrix.png"))
gt_file = self.owl.get_example(NIDM['DesignMatrix'])
self.gt_ttl_files = [os.path.join(TERM_RESULTS_DIR, \
gt_file.replace("file://./", "")),
os.path.join(TERM_RESULTS_DIR, "examples", "Image-DesignMatrix.txt")]
self._create_gt_and_compare("Design Matrix")
def test_data(self):
data = Data(grand_mean_scaling=True, target=100.0)
self.doc.update(data.export())
gt_file = self.owl.get_example(NIDM['Data'])
self.gt_ttl_files.append(os.path.join(TERM_RESULTS_DIR, \
gt_file.replace("file://./", "")))
self._create_gt_and_compare("Data")
# INDEPEDENT_CORR = NIDM['IndependentError']
# SERIALLY_CORR = NIDM['SeriallyCorrelatedError']
# COMPOUND_SYMMETRY_CORR = NIDM['CompoundSymmetricError']
# ARBITRARILY_CORR = NIDM['ArbitriralyCorrelatedError']
# def test_error_model_indepdt_global(self):
# error_distribution = GAUSSIAN_DISTRIBUTION
# variance_homo = True
# variance_spatial = SPATIALLY_GLOBAL
# dependance = INDEPEDENT_CORR
# dependance_spatial = SPATIALLY_GLOBAL
# error_model = ErrorModel(error_distribution, variance_homo,
# variance_spatial, dependance, dependance_spatial)
# self.doc.update(error_model.export())
# nidm_classes = {
# "ErrorModel": dict(
# error_model_id="niiri:error_model_id",
# noise_distribution="nidm:GaussianDistribution",
# variance_homo="true",
# variance_spatial="nidm:SpatiallyGlobal",
# dependence="nidm:IndependentError",
# dependence_spatial="nidm:SpatiallyLocal"
# )
# }
# self._create_gt_and_compare(nidm_classes, "Data")
def _create_gt_and_compare(self, class_name):
# Write-out current example in a provn file and convert to turtle
provn_fid = open(self.provn_file, 'w')
provn_fid.write(self.doc.get_provn())
provn_fid.close()
ttl_file = self.provn_file.replace(".provn", ".ttl")
#.........这里部分代码省略.........
示例2: example
# 需要导入模块: from prov.model import ProvDocument [as 别名]
# 或者: from prov.model.ProvDocument import get_provn [as 别名]
#.........这里部分代码省略.........
g.actedOnBehalfOf(walter, utexas)
g.actedOnBehalfOf(me, utexas)
# Include the ADAMA platform as an Agent and set attribution
# dcterms:title and dcterms:description are hardcoded
# dcterms:language is hard-coded
# dcterms:source is the URI of the public git source repository for ADAMA
# "dcterms:updated": "2015-04-17T09:44:56" - this would actually be the date ADAMA was updated
adama_platform = g.agent(ap['adama_platform'], {'dcterms:title': "ADAMA", 'dcterms:description': "Araport Data and Microservices API", 'dcterms:language':"en-US", 'dcterms:identifier':"https://api.araport.org/community/v0.3/", 'dcterms:updated': "2015-04-17T09:44:56" })
g.wasGeneratedBy(adama_platform, walter)
# Include the ADAMA microservice as an Agent and set attribution+delegation
# dcterms:title and dcterms:description are inherited from the service's metadata
# dcterms:language is hard-coded
# dcterms:identifier is the deployment URI for the service
# dcterms:source is the URI of the public git source repository. The URL in this example is just a dummy
#
# The name for each microservice should be unique. We've decided to
# use the combination of namespace, service name, and version
microservice_name = 'mwvaughn/bar_annotation_v1.0.0'
adama_microservice = g.agent(ap[microservice_name], {'dcterms:title': "BAR Annotation Service", 'dcterms:description': "Returns annotation from locus ID", 'dcterms:language':"en-US", 'dcterms:identifier':"https://api.araport.org/community/v0.3/mwvaughn/bar_annotation_v1.0.0", 'dcterms:source':"https://github.com/Arabidopsis-Information-Portal/prov-enabled-api-sample" })
# the microservice was generated by me on date X (don't use now, use when the service was updated)
g.wasGeneratedBy(adama_microservice, me, datetime.datetime.now())
# The microservice used the platform now
g.used(adama_microservice, adama_platform, datetime.datetime.now())
# Sources
#
# Define BAR
# Agents
nick = g.agent(ap['nicholas_provart'], {
'prov:type': PROV["Person"], 'foaf:givenName': "Nicholas Provart", 'foaf:mbox': "[email protected]"
})
utoronto = g.agent(ap['university_of_toronto'], {
'prov:type': PROV["Organization"], 'foaf:givenName': "University of Toronto", 'dcterms:identifier':"http://www.utoronto.ca/"
})
g.actedOnBehalfOf(nick, utoronto)
# Entity
# All fields derived from Sources.yml
# dcterms:title and dcterms:description come straight from the YAML
# dcterms:identifier - URI pointing to the source's canonical URI representation
# optional - dcterms:language: Recommended best practice is to use a controlled vocabulary such as RFC 4646
# optional - dcterms:updated: date the source was published or last updated
# optional - dcterms:license: Simple string or URI to license. Validate URI if provided?
datasource1 = g.entity(ap['datasource1'], {'dcterms:title': "BAR Arabidopsis AGI -> Annotation", 'dcterms:description': "Most recent annotation for given AGI", 'dcterms:language':"en-US", 'dcterms:identifier':"http://bar.utoronto.ca/webservices/agiToAnnot.php", 'dcterms:updated':"2015-04-17T09:44:56", 'dcterms:license':"Creative Commons 3.0" })
# Set up attribution to Nick
g.wasAttributedTo(datasource1, nick)
# Define TAIR
# Agents
# dcterms:language: Recommended best practice is to use a controlled vocabulary such as RFC 4646
eva = g.agent(ap['eva_huala'], {
'prov:type': PROV["Person"], 'foaf:givenName': "Eva Huala"
})
phoenix = g.agent(ap['phoenix_bioinformatics'], {
'prov:type': PROV["Organization"], 'foaf:givenName': "Phoenix Bioinformatics"
})
g.actedOnBehalfOf(eva, phoenix)
# Entity
# All fields derived from Sources.yml
# optional - dcterms:citation: Plain text bibliographic citation. If only provided as doi, should we try to validate it?
datasource2 = g.entity(ap['datasource2'], {'dcterms:title': "TAIR", 'dcterms:description': "The Arabidopsis Information Resource", 'dcterms:language':"en-US", 'dcterms:identifier':"https://www.arabidopsis.org/", 'dcterms:citation':"The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Research 2011 doi: 10.1093/nar/gkr1090"})
g.wasAttributedTo(datasource2, eva)
# In Sources.yml, these two sources are nested. Define that relationship here
# There are other types of relationships but we will just use derived from for simplicity in this prototype
g.wasDerivedFrom(ap['datasource1'], ap['datasource2'])
# Depending on which ADAMA microservice type we are using, define an activity
# Eventually, break these into more atomic actions in a chain
action1 = g.activity(ap['do_query'], datetime.datetime.now())
# action1 = g.activity(ap['do_map'], datetime.datetime.now())
# action1 = g.activity(ap['do_generic'], datetime.datetime.now())
# action1 = g.activity(ap['do_passthrough'], datetime.datetime.now())
# Future... Support for ADAMA-native microservices
# action1 = g.activity(ap['generate'], datetime.datetime.now())
# Define current ADAMA response as an Entity
# This is what's being returned to the user and is thus the subject of the PROV record
# May be able to add more attributes to it but this is the minimum
response = g.entity(ap['adama_response'])
# Response is generated by the process_query action
# Time-stamp it!
g.wasGeneratedBy(response, ap['do_query'], datetime.datetime.now())
# The process_query used the microservice
g.used(ap['do_query'], adama_microservice, datetime.datetime.now())
# The microservice used datasource1
g.used(adama_microservice, datasource1, datetime.datetime.now())
# Print prov_n
print(g.get_provn())
# Print prov-json
print(g.serialize())
# Write out as a pretty picture
graph = prov.dot.prov_to_dot(g)
graph.write_png('Sources.png')