当前位置: 首页>>代码示例>>Python>>正文


Python PriorityQueue.extractMin方法代码示例

本文整理汇总了Python中priorityQueue.PriorityQueue.extractMin方法的典型用法代码示例。如果您正苦于以下问题:Python PriorityQueue.extractMin方法的具体用法?Python PriorityQueue.extractMin怎么用?Python PriorityQueue.extractMin使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在priorityQueue.PriorityQueue的用法示例。


在下文中一共展示了PriorityQueue.extractMin方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: singleSourceShortestPath

# 需要导入模块: from priorityQueue import PriorityQueue [as 别名]
# 或者: from priorityQueue.PriorityQueue import extractMin [as 别名]
    def singleSourceShortestPath(self, srcID):
        assert (srcID >= 0 and srcID < self.n)

        # Implement Dijkstra's algorithm
        # Input:
        # self --> a reference to a MyGraph instance
        # srcID: the id of the source vertex.
        # Expected Output: (d,pi)
        #    d  --> Map each vertex id v to the distance from srcID
        #    pi --> Map each reachable vertex id v (except for srcID) to a parent.

        # Initialize the priority queue
        pq = PriorityQueue(self.n) #create the priority queue
        cur=self
        for i in range(0,self.n): # Iterate through all vertex ID
            if ( i == srcID):     # If ID is srcID
                pq.set(i,0.0)     # Distance of srcID should be zero
            else:                 # ID is not srcID
                pq.set(i, pq.Inf) # Distance should be infinity
        
        d = {}  # Initialize the map with distances to nodes
        pi = {} # Initialize the map with parents of vertices

        minKey, minDist=pq.extractMin()

        d[minKey]=minDist #set orignal source distance to 0
        pi[minKey]=minKey #set sources to orginal source



        while(pq.isEmpty()==False):# COMPLETE the Dijkstra code here

                lst=self.adjList[minKey]#grap array of lists of format (vertices,weight) for node minKey
                for n in lst:#loop through said list
                        
                        ##grap the next node attached to this node somehow
                        dist=n[1]+minDist#grab distance from list

                        node=n[0] #grab node from list
                        if(pq.hasKey(node)):#check if that nodes min dist has been found
                                if(pq.get(node)>dist):#check if path to the node from minKey is less then current path
                                        pq.set(node,dist)#set the nodes distance in the queue
                                        d[node]=dist#set the nodes distance in the return array
                                        pi[node]=minKey#sets the nodes parents

                minKey, minDist=pq.extractMin()#extract next node dont need to extract last node as all the paths will be filled would probably work better in a do while loop
                        

            
        return (d,pi)
开发者ID:BrandonSpitler,项目名称:algorithm,代码行数:52,代码来源:myGraph.py

示例2: singleSourceShortestPath

# 需要导入模块: from priorityQueue import PriorityQueue [as 别名]
# 或者: from priorityQueue.PriorityQueue import extractMin [as 别名]
    def singleSourceShortestPath(self, srcID):
        assert (srcID >= 0 and srcID < self.n) # ensure that srcID is between 0 and size of graph.
        # Implement Dijkstra's algorithm
        # Input:
        # self --> a reference to a MyGraph instance
        # srcID: the id of the source vertex.
        # Expected Output: (d,pi)
        #    d  --> Map each vertex id v to the distance from srcID
        #    pi --> Map each reachable vertex id v (except for srcID) to a parent.

        # Initialize the priority queue
        pq = PriorityQueue(self.n) #create the priority queue
        
        for i in range(0,self.n): # Iterate through all vertex ID
            if  i == srcID:     # If ID is srcID
                pq.set(i, 0.0)     # Distance of srcID should be zero
            else:                 # ID is not srcID
                pq.set(i, pq.Inf) # Distance should be infinity
        
        d = {}  # Initialize the map with distances to nodes
        pi = {} # Initialize the map with parents of vertices

        while not pq.isEmpty():  # loop until priority queue is empty.
            (node, dist) = pq.extractMin() # extract smallest dist node.
            d[node] = dist # update dictionary with shortest distance.
            for (vertex, weight) in self.adjList[node]: # check the adjacency list of popped node.
                newDist = dist + weight # calculate new distance.
                if pq.hasKey(vertex): # if we haven't already popped the node in the adjacency list yet.
                    if newDist < pq.get(vertex): # check distance vs new calculated dist.
                        pq.set(vertex, newDist) # update priority queue.
                        pi[vertex] = node # update parent list.

        return (d, pi)
开发者ID:christwt,项目名称:Algorithms,代码行数:35,代码来源:myGraph.py

示例3: dijkstra

# 需要导入模块: from priorityQueue import PriorityQueue [as 别名]
# 或者: from priorityQueue.PriorityQueue import extractMin [as 别名]
def dijkstra(graphObj, startVertex):
    pq = PriorityQueue()

    for vertex in graphObj.getVertices():
        if vertex == startVertex:
            pq.insert([0, vertex])
            graphObj.verticesList[startVertex].distance = 0
        else:
            pq.insert([INFINITY, vertex])

    while(len(pq.pqueue)):
        currentVertex = pq.extractMin()

        if len(pq.pqueue) == 1:
            break

        # print(pq.pqueue, pq.lookup)
        for adjNode in graphObj.verticesList[currentVertex[1]].getConnections():
            newDistance = graphObj.verticesList[currentVertex[1]].distance + graphObj.verticesList[currentVertex[1]].adjList[adjNode]
            if newDistance < graphObj.verticesList[adjNode].distance:
                graphObj.verticesList[adjNode].distance = newDistance
                graphObj.verticesList[adjNode].predecessor = currentVertex[1]
                index = pq.lookup[adjNode]
                pq.decreaseKey(index, newDistance)

    return graphObj
开发者ID:AjithPanneerselvam,项目名称:Algorithm,代码行数:28,代码来源:dijkstra.py

示例4: singleSourceShortestPath

# 需要导入模块: from priorityQueue import PriorityQueue [as 别名]
# 或者: from priorityQueue.PriorityQueue import extractMin [as 别名]
    def singleSourceShortestPath(self, srcID):
        assert (srcID >= 0 and srcID < self.n)
        # Implement Dijkstra's algorithm
        # Input:
        # self --> a reference to a MyGraph instance
        # srcID: the id of the source vertex.
        # Expected Output: (d,pi)
        #    d  --> Map each vertex id v to the distance from srcID
        #    pi --> Map each reachable vertex id v (except for srcID) to a parent.

        # Initialize the priority queue
        pq = PriorityQueue(self.n) #create the priority queue

        for i in range(0,self.n): # Iterate through all vertex ID
            if ( i == srcID):     # If ID is srcID
                pq.set(i,0.0)     # Distance of srcID should be zero
            else:                 # ID is not srcID
                pq.set(i, pq.Inf) # Distance should be infinity

        d = {}  # Initialize the map with distances to nodes
        pi = {} # Initialize the map with parents of vertices

        d[srcID] = 0 # first node to dist map since while won't catch it.

        while not pq.isEmpty():
            min = pq.extractMin()
            # Look at neighbors
            for neighbor in self.adjList[min[0]]: # where neighbor has not yet been removed from pq?
                alt = min[1] + neighbor[1]
                if pq.hasKey(neighbor[0]) and alt < pq.get(neighbor[0]): # previously stored needs to be replayed
                    # Update distances and parents everywhere
                    pq.set(neighbor[0], alt)
                    d[neighbor[0]] = alt
                    pi[neighbor[0]] = min[0]
        return (d,pi)
开发者ID:Ditofry,项目名称:djikstras_example,代码行数:37,代码来源:myGraph.py

示例5: prims

# 需要导入模块: from priorityQueue import PriorityQueue [as 别名]
# 或者: from priorityQueue.PriorityQueue import extractMin [as 别名]
def prims(graphObj, start):
    pq = PriorityQueue()

    for vertex in graphObj.verticesList:
        if vertex == start:
            g.verticesList[vertex].distance = 0
            pq.insert([0, vertex])
            continue
        g.verticesList[vertex].distance = INFINITY
        pq.insert([INFINITY, vertex])

    while(len(pq.pqueue)):
        currentVertex = pq.extractMin()

        if len(pq.pqueue) == 1:
            return

        for adjNode in graphObj.verticesList[currentVertex[1]].getConnections():
            if adjNode in pq.lookup(adjNode):
                newDistance = graphObj.verticesList[currentVertex[1]].getCost(adjNode)
                if newDistance < graphObj.verticesList[adjNode].distance:
                    graphObj.verticesList[adjNode].distance = newDistance
                    graphObj.verticesList[adjNode].predecessor = currentVertex[1]

        return graphObj
开发者ID:AjithPanneerselvam,项目名称:Algorithm,代码行数:27,代码来源:prims.py

示例6: singleSourceShortestPath

# 需要导入模块: from priorityQueue import PriorityQueue [as 别名]
# 或者: from priorityQueue.PriorityQueue import extractMin [as 别名]
    def singleSourceShortestPath(self, srcID):
        assert (srcID >= 0 and srcID < self.n)
        # Implement Dijkstra's algorithm
        # Input:
        # self --> a reference to a MyGraph instance
        # srcID: the id of the source vertex.
        # Expected Output: (d,pi)
        #    d  --> Map each vertex id v to the distance from srcID
        #    pi --> Map each reachable vertex id v (except for srcID) to a parent.

        # Initialize the priority queue
        pq = PriorityQueue(self.n) #create the priority queue

        for i in range(0,self.n): # Iterate through all vertex ID
            if ( i == srcID):     # If ID is srcID
                pq.set(i,0.0)     # Distance of srcID should be zero
            else:                 # ID is not srcID
                pq.set(i, pq.Inf) # Distance should be infinity

        d = {}  # Initialize the map with distances to nodes
        pi = {} # Initialize the map with parents of vertices

        parent = None

        while not pq.isEmpty():
            minNode = pq.extractMin()
            if parent is None:
                d[minNode[0]] = minNode[1]
                pi[minNode[0]] = minNode[0]
            elif minNode[1] != pq.Inf:
                d[minNode[0]] = float(round(decimal.Decimal(minNode[1]), 2))
            else:
                d[minNode[0]] = pq.Inf

            lst = self.adjList[minNode[0]]
            for i in range(len(lst)):
                if pq.hasKey(lst[i][0]) and pq.get(lst[i][0]) > lst[i][1] + d[minNode[0]]:
                    pi[lst[i][0]] = minNode[0]
                    pq.set(lst[i][0], lst[i][1] + d[minNode[0]])

            parent = minNode[0]

        return (d,pi)
开发者ID:jacksonchen,项目名称:algorithms_hw,代码行数:45,代码来源:myGraph.py


注:本文中的priorityQueue.PriorityQueue.extractMin方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。