本文整理汇总了Python中priorityQueue.PriorityQueue.decreaseKey方法的典型用法代码示例。如果您正苦于以下问题:Python PriorityQueue.decreaseKey方法的具体用法?Python PriorityQueue.decreaseKey怎么用?Python PriorityQueue.decreaseKey使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类priorityQueue.PriorityQueue
的用法示例。
在下文中一共展示了PriorityQueue.decreaseKey方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: dijkstra
# 需要导入模块: from priorityQueue import PriorityQueue [as 别名]
# 或者: from priorityQueue.PriorityQueue import decreaseKey [as 别名]
def dijkstra(graphObj, startVertex):
pq = PriorityQueue()
for vertex in graphObj.getVertices():
if vertex == startVertex:
pq.insert([0, vertex])
graphObj.verticesList[startVertex].distance = 0
else:
pq.insert([INFINITY, vertex])
while(len(pq.pqueue)):
currentVertex = pq.extractMin()
if len(pq.pqueue) == 1:
break
# print(pq.pqueue, pq.lookup)
for adjNode in graphObj.verticesList[currentVertex[1]].getConnections():
newDistance = graphObj.verticesList[currentVertex[1]].distance + graphObj.verticesList[currentVertex[1]].adjList[adjNode]
if newDistance < graphObj.verticesList[adjNode].distance:
graphObj.verticesList[adjNode].distance = newDistance
graphObj.verticesList[adjNode].predecessor = currentVertex[1]
index = pq.lookup[adjNode]
pq.decreaseKey(index, newDistance)
return graphObj
示例2: prim
# 需要导入模块: from priorityQueue import PriorityQueue [as 别名]
# 或者: from priorityQueue.PriorityQueue import decreaseKey [as 别名]
def prim(aGraph, startVertex):
# create a priority queue that uses distance as the value to determine priority and thus its position
# use the distance to the vertex as the priority because while exploring the next vertex, want to explore the vertex that has the smallest distance
# decreaseKey method used when the distance to a vertex that is already in the queue is reduced, and thus moves that vertex toward the front of the queue.
pQueue = PriorityQueue()
# initialize the state of the graph
for vertex in aGraph:
# initialally all vertices values are = infinity (sys.maxint) because we assume the greatest value and then update appropiately
vertex.setDistance(sys.maxsize)
vertex.setPred(None)
# distance represents distance from the startVertex, trivially 0 for the startVertex
startVertex.setDistance(0)
# key value pair
# key is distance and vertex is the value
pQueue.buildHeap([ (vertex.getDistance(), vertex) for vertex in aGraph ])
while not pQueue.isEmpty():
currentVertex = pQueue.delMin()
# iterate over the currentVertex's edges
for nextVertex in currentVertex.getConnections():
# calculate the weight from currentVertex to nextVertex
newCost = currentVertex.getWeight(nextVertex)
# found a shorter path
# node is not considered to be part of the spanning tree until it is removed from the priority queue.
# nextVertex in pQueue means that vertex is not yet in the spanning tree so it is safe to add (ensures an acyclic graph)
if nextVertex in pQueue and newCost< nextVertex.getDistance():
# assign the predecessor appropiately
nextVertex.setPred(currentVertex)
# set a new distance on the nextVertex
nextVertex.setDistance(newCost)
# update the priorityQueue with the correct values
pQueue.decreaseKey(nextVertex, newCost)
示例3: dijkstra
# 需要导入模块: from priorityQueue import PriorityQueue [as 别名]
# 或者: from priorityQueue.PriorityQueue import decreaseKey [as 别名]
def dijkstra(aGraph, startVertex):
# create a priority queue that uses distance as the value to determine priority and thus its position
# use the distance to the vertex as the priority because while exploring the next vertex, want to explore the vertex that has the smallest distance
# decreaseKey method used when the distance to a vertex that is already in the queue is reduced, and thus moves that vertex toward the front of the queue.
pQueue = PriorityQueue()
# distance represents distance from the startVertex, trivially 0 for the startVertex
# initialally all vertices values are = infinity (sys.maxint) because we assume the greatest value and then update appropiately
startVertex.setDistance(0)
# key value pair
# key is distance and vertex is the value
pQueue.buildHeap([ (vertex.getDistance(), vertex) for vertex in aGraph ])
while not pQueue.isEmpty():
currentVertex = pQueue.delMin()
# iterate over the currentVertex's edges
for nextVertex in currentVertex.getConnections():
# distance of current vertex and the weight of it's edges
newDistance = currentVertex.getDistance() + currentVertex.getWeight(nextVertex)
# found a shorter path
if newDistance < nextVertex.getDistance():
# set a new distance on the nextVertex
nextVertex.setDistance(newDistance)
# assign the predecessor appropiately
nextVertex.setPred(currentVertex)
# update the priorityQueue with the correct values
pQueue.decreaseKey(nextVertex, newDistance)
示例4: Dijkstras
# 需要导入模块: from priorityQueue import PriorityQueue [as 别名]
# 或者: from priorityQueue.PriorityQueue import decreaseKey [as 别名]
def Dijkstras(graph,start):
pq=PriorityQueue()
start.setDistance(0)
pq.buildHeap([(v.getDistance(),v) for v in graph]) # distance is the key in the priority queue
while not pq.isEmpty():
currentvertex=pq.delMin()
for newvertex in currentvertex.getConnections():
newDist=currentvertex.getDistance()+currentvertex.getWeight(newvertex)
if newDist<newvertex.getDistance():
# at the start the distance of all the vertices is set to maximum. That's why the if statement will be executed
newvertex.setDistance(newDist)
newvertex.setPredecessor(currentvertex)
pq.decreaseKey(newvertex,newDist)
示例5: prim
# 需要导入模块: from priorityQueue import PriorityQueue [as 别名]
# 或者: from priorityQueue.PriorityQueue import decreaseKey [as 别名]
def prim(graph,start): # it belongs to the family of greedy algorithms
pq=PriorityQueue()
for v in graph:
v.setDistance(sys.maxsize)
v.setPredecessor(None)
start.setDistance(0)
pq.buildHeap([(v.getDistance(),v) for v in graph])
while not pq.isEmpty()
currentvertex=pq.delMin()
for newvertex in currentvertex.getConnections():
newDist=currentvertex.getWeight(newvertex)
if newDist<newvertex.getDistance() and newvertex in pq:
newvertex.setDistance(newDist)
newvertex.setPredecessor(currentvertex)
pq.decreaseKey(newvertex,newDist)