本文整理汇总了Python中plotly.tools.FigureFactory.create_distplot方法的典型用法代码示例。如果您正苦于以下问题:Python FigureFactory.create_distplot方法的具体用法?Python FigureFactory.create_distplot怎么用?Python FigureFactory.create_distplot使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类plotly.tools.FigureFactory
的用法示例。
在下文中一共展示了FigureFactory.create_distplot方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: dist_plot
# 需要导入模块: from plotly.tools import FigureFactory [as 别名]
# 或者: from plotly.tools.FigureFactory import create_distplot [as 别名]
def dist_plot(df,
groupby=None,
val=None,
bin_size=1,
title=None,
show_hist=True,
show_kde=True,
show_rug=True,
show_legend=True,
figsize=None,
outfile=None,
xlabel=None,
ylabel=None):
if groupby is None:
fig = FF.create_distplot([df[c] for c in df.columns],
df.columns.values.tolist(),
bin_size=bin_size,
show_rug=show_rug,
show_curve=show_kde)
else:
groups = sorted(df[groupby].unique().tolist(), reverse=True)
data = []
if val is None:
val = df.columns.drop(groupby)[0] # choose first non-groupby column
for group in groups:
mask = df[groupby] == group
data.append(df.loc[mask, val])
fig = FF.create_distplot(data,
groups,
bin_size=bin_size,
show_hist=show_hist,
show_rug=show_rug,
show_curve=show_kde)
fig['layout'].update(showlegend=show_legend)
if title:
fig['layout'].update(title=title)
if xlabel:
fig['layout'].update(xaxis=go.XAxis(title=xlabel))
if ylabel:
fig['layout'].update(yaxis=go.YAxis(title=ylabel))
if figsize and len(figsize) == 2:
fig['layout'].update(width=figsize[0])
fig['layout'].update(height=figsize[1])
ol.iplot(fig, show_link=False)
# write figure to HTML file
if outfile:
print('Exporting copy of figure to %s...' % outfile)
ol.plot(fig, auto_open=False, filename=outfile)
示例2: plot_Age
# 需要导入模块: from plotly.tools import FigureFactory [as 别名]
# 或者: from plotly.tools.FigureFactory import create_distplot [as 别名]
def plot_Age(path, feature, type_):
feature = pd.DataFrame(feature)
feature = feature.reset_index()
data = folder_reader(path)
data.columns = ['temperature', 'wind', 'age', 'total']
aux = data[data.age < 1950]
aux = aux.groupby(type_)['total'].sum()
aux = aux.reset_index()
aux = pd.merge(aux, feature, how='left', left_index=type_, right_index="index")
number = aux[aux.columns[1]] * 100 / aux[aux.columns[3]]
Temp_1 = np.repeat(aux[aux.columns[0]].values, number.round(0).astype(int))
aux = data[data.age >= 1950]
aux = aux[aux.age < 1985]
aux = aux.groupby(type_)['total'].sum()
aux = aux.reset_index()
aux = pd.merge(aux, feature, how='left', left_index=type_, right_index="index")
number = aux[aux.columns[1]] * 100 / aux[aux.columns[3]]
Temp_2 = np.repeat(aux[aux.columns[0]].values, number.round(0).astype(int))
aux = data[data.age >= 1985]
aux = aux.groupby(type_)['total'].sum()
aux = aux.reset_index()
aux = pd.merge(aux, feature, how='left', left_index="wind", right_index="index")
number = aux[aux.columns[1]] * 100 / aux[aux.columns[3]]
Temp_3 = np.repeat(aux[aux.columns[0]].values, number.round(0).astype(int))
hist_data = [Temp_1, Temp_2, Temp_3]
group_labels = ['Older than 65', 'Betwen 30-65', 'Younger than 30']
colors = ['rgb(0, 0, 100)', 'rgb(0, 200, 200)', 'rgb(0, 300, 300)']
fig = FF.create_distplot(hist_data, group_labels, colors=colors)
plot_url = py.offline.plot(fig)
示例3: make_plotly_figs
# 需要导入模块: from plotly.tools import FigureFactory [as 别名]
# 或者: from plotly.tools.FigureFactory import create_distplot [as 别名]
def make_plotly_figs():
from plotly.tools import FigureFactory as FF
import numpy as np
x1 = np.random.randn(200)
hist_data = [x1]
group_labels = ['Group 1']
# Create distplot with curve_type set to 'normal'
fig = FF.create_distplot(hist_data, group_labels, bin_size=.25, show_curve=False)
# Add title
fig['layout'].update(title='Plot')
return [fig]
示例4: distPlot
# 需要导入模块: from plotly.tools import FigureFactory [as 别名]
# 或者: from plotly.tools.FigureFactory import create_distplot [as 别名]
def distPlot(request):
df = cPickle.loads(str(request.session['dataframe']))
x0 = df[request.GET['x_axis']]
x1 = df[request.GET['y_axis']]
x2 = df[request.GET['z_axis']]
data=[x0,x1,x2]
labels = [request.GET['x_axis'],request.GET['y_axis'],request.GET['z_axis']]
colors = ['rgb(0, 0, 100)', 'rgb(0, 200, 200)','rgb(0, 200, 100)']
fig = FF.create_distplot(
data, labels, bin_size=.2, colors=colors)
fig['layout'].update(title='Distplot of {} vs {} vs {}'.format(request.GET['x_axis'], \
request.GET['y_axis'], \
request.GET['z_axis']))
url = py.plot(fig, filename='Distplot with Normal Curve', auto_open=False)
dashboard_json = {
"rows": [
[{"plot_url": url}]
],
"banner": {
"visible": False,
"backgroundcolor": "#2A3F54",
"textcolor": "white",
# "title": "{} group_by {}".format(request.GET['x_axis'], request.GET['y_axis']),
"links": []
},
"requireauth": False,
"auth": {
"username": "Acme Corp",
"passphrase": ""
}
}
response = requests.post('https://dashboards.ly/publish',
data={'dashboard': json.dumps(dashboard_json)},
headers={'content-type': 'application/x-www-form-urlencoded'})
response.raise_for_status()
dashboard_url = response.json()['url']
return dashboard_url
示例5: _plot_accuracy_distribution
# 需要导入模块: from plotly.tools import FigureFactory [as 别名]
# 或者: from plotly.tools.FigureFactory import create_distplot [as 别名]
def _plot_accuracy_distribution(dsets_kpis):
"""
Generate plotly histogram of accuracy distributions, overlaid
Return a plot structure
"""
data = []
for key in dsets_kpis.keys():
accuracy = dsets_kpis[key]['accuracy']
data.append(accuracy)
group_labels = dsets_kpis.keys()
fig = FF.create_distplot(data, group_labels, show_hist=False)
fig['layout']['xaxis'].update(title='Accuracy')
fig['layout']['xaxis']['tickfont'].update(size=24)
fig['layout']['xaxis']['titlefont'].update(size=24)
fig['layout']['yaxis'].update(title='density')
fig['layout']['yaxis']['tickfont'].update(size=24)
fig['layout']['yaxis']['titlefont'].update(size=24)
fig['layout']['font']['size'] = 20
return fig
示例6: plot_Gender
# 需要导入模块: from plotly.tools import FigureFactory [as 别名]
# 或者: from plotly.tools.FigureFactory import create_distplot [as 别名]
def plot_Gender(path, feature, type_):
feature = pd.DataFrame(feature)
feature = feature.reset_index()
data = folder_reader(path)
data.columns = ['temperature', 'wind', 'gender', 'total']
aux = data[data.gender == 1]
aux = aux.groupby(type_)['total'].sum()
aux = aux.reset_index()
aux = pd.merge(aux, feature, how='left', left_index=type_, right_index="index")
number = aux[aux.columns[1]] * 100 / aux[aux.columns[3]]
Temp_1 = np.repeat(aux[aux.columns[0]].values, number.round(0).astype(int))
aux = data[data.gender == 2]
aux = aux.groupby(type_)['total'].sum()
aux = aux.reset_index()
aux = pd.merge(aux, feature, how='left', left_index=type_, right_index="index")
number = aux[aux.columns[1]] / aux[aux.columns[3]]
Temp_2 = np.repeat(aux[aux.columns[0]].values, number.round(0).astype(int))
hist_data = [Temp_1, Temp_2]
group_labels = ['Man', 'Woman']
colors = ['rgb(0, 0, 100)', 'rgb(0, 200, 200)']
fig = FF.create_distplot(hist_data, group_labels, colors=colors)
plot_url = py.offline.plot(fig)
示例7: Height
# 需要导入模块: from plotly.tools import FigureFactory [as 别名]
# 或者: from plotly.tools.FigureFactory import create_distplot [as 别名]
width =1
),
opacity=0.8
)
)
dataList.append(name)
layout = go.Layout(scene = go.Scene(xaxis=dict(title='Heel Height (mm)'), yaxis=dict(title='Forefoot Height (mm)'),zaxis=dict(title ='Weight (oz)')),
margin=dict(l=0,r=0,b=0,t=0))
fig = go.Figure(data = dataList, layout=layout)
plot_url = py.plot(fig, filename="3d-scatter-test")
#%%
hist_data= []
for x in brands:
data = rwDF[(rwDF.Brand==x)]['Price']
data.dropna(inplace=True)
hist_data.append(data)
fig = FF.create_distplot(hist_data, brands, bin_size=20)
plot_url=py.plot(fig, filename="Multiple Hists")
#%%
# Average Price, Forefoot Height, Heel Height, Weight by different Runningwarehouse shoe type
rwDF.groupby('Shoe Type').mean().T.plot(kind = 'bar')
sns.pairplot(rwDF,vars=['Forefoot Height (mm)', 'Heel Height (mm)', 'Weight (oz)', 'Drop (mm)'], hue="Brand", palette="husl")
sns.pairplot(rwDF,vars=['Forefoot Height (mm)', 'Heel Height (mm)', 'Weight (oz)', 'Drop (mm)'], hue="Shoe Type")
示例8: dict
# 需要导入模块: from plotly.tools import FigureFactory [as 别名]
# 或者: from plotly.tools.FigureFactory import create_distplot [as 别名]
from plotly.tools import FigureFactory as FF
if args['-t']:
import numpy as np
dataMap = {'test': np.random.randn(400)}
hist_data = []
group_labels = []
for k,v in dataMap.items():
hist_data.append(v)
group_labels.append(k)
# Create distplot
colors = ['#37AA9C', '#2BCDC1','#F66095','#393E46']
fig = FF.create_distplot(hist_data, group_labels,bin_size=0.2,
curve_type='normal',
colors=colors,
show_rug=False)
afsize = 10 #annotation font size.
astring= '13q12.13'
layout = go.Layout(
annotations=[
dict(
x=0.018476,
y=0.085,
xref='x',
yref='y',
#yref='paper',
text='FSGS_' + astring,
showarrow=True,
arrowhead=2,
示例9: dict
# 需要导入模块: from plotly.tools import FigureFactory [as 别名]
# 或者: from plotly.tools.FigureFactory import create_distplot [as 别名]
import plotly
import plotly.plotly as py
import plotly.graph_objs as go
from plotly.tools import FigureFactory as FF
import numpy as np
dataMap = {'test': np.random.randn(200)}
hist_data = []
group_labels = []
for k,v in dataMap.items():
hist_data.append(v)
group_labels.append(k)
# Create distplot
fig = FF.create_distplot(hist_data, group_labels,bin_size=0.02,curve_type='normal')
layout = go.Layout(
annotations=[
dict(
x=3,
y=0,
xref='x',
yref='y',
text='FSGS_UBD',
showarrow=True,
arrowhead=2,
ax=0,
ay=-100
),
],
示例10: rain_dist
# 需要导入模块: from plotly.tools import FigureFactory [as 别名]
# 或者: from plotly.tools.FigureFactory import create_distplot [as 别名]
def rain_dist(path, graph='matplotlib'):
rain_dist = folder_reader(path)
rain_dist.columns = ['rain', 'age', 'count']
no = rain_dist[rain_dist.rain == 'no'][['age', 'count']].set_index('age').sort()
low = rain_dist[rain_dist.rain == 'low'][['age', 'count']].set_index('age').sort()
high = rain_dist[rain_dist.rain == 'high'][['age', 'count']].set_index('age').sort()
if graph == 'matplotlib':
pylt.figure(figsize=(13, 9))
pylt.plot((high / rain_dist[rain_dist.rain == 'high']['count'].sum()), label='high rain')
pylt.plot((low / rain_dist[rain_dist.rain == 'low']['count'].sum()), label='low rain')
pylt.plot((no / rain_dist[rain_dist.rain == 'no']['count'].sum()), label='no rain')
pylt.legend(loc='upper right')
pylt.xlabel('age')
pylt.ylabel('% of population')
pylt.grid()
pylt.show()
if graph == 'plotly':
l = low.reset_index()
h = high.reset_index()
n = no.reset_index()
l = l[l.age < 81]
h = h[h.age < 81]
n = n[n.age < 81]
n['count'] = (n['count'] / 1000).astype(int)
l['count'] = (l['count'] / 10).astype(int)
h['count'] = (h['count'] / 10).astype(int)
low_hist = np.repeat(l.age.values, l['count'])
high_hist = np.repeat(h.age.values, h['count'])
no_hist = np.repeat(n.age.values, n['count'])
hist_data = [low_hist]
group_labels = ['low rain']
colors = ['rgb(0, 0, 100)']
# Create distplot with custom bin_size
fig = FF.create_distplot(hist_data, group_labels, bin_size=1, colors=colors)
# Plot!
py.offline.iplot(fig)
# Add histogram data
# Group data together
hist_data = [high_hist]
group_labels = ['high rain']
colors = ['rgb(0, 200, 200)']
# Create distplot with custom bin_size
fig = FF.create_distplot(hist_data, group_labels, bin_size=1, colors=colors)
# Plot!
py.offline.iplot(fig)
# Add histogram data
# Group data together
hist_data = [no_hist]
group_labels = ['no rain']
colors = ['rgb(0, 100, 100)']
# Create distplot with custom bin_size
fig = FF.create_distplot(hist_data, group_labels, bin_size=1, colors=colors)
# Plot!
py.offline.iplot(fig)
hist_data = [low_hist, high_hist, no_hist]
group_labels = ['low rain', 'high_rain', 'no rain']
# Create distplot with custom bin_size
fig = FF.create_distplot(hist_data, group_labels, bin_size=1)
# Plot!
py.offline.iplot(fig)