当前位置: 首页>>代码示例>>Python>>正文


Python tools.FigureFactory类代码示例

本文整理汇总了Python中plotly.tools.FigureFactory的典型用法代码示例。如果您正苦于以下问题:Python FigureFactory类的具体用法?Python FigureFactory怎么用?Python FigureFactory使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了FigureFactory类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: slack_stock_price

def slack_stock_price(msg: CommandMessage, config: Dict):
    if len(msg.text) > 1:
        try:
            response = BarchartClient(config.get('api_key', '')) \
                .get_history(msg.text.upper())
        except:
            # API request error
            # Already logged in BarchartClient, so just return error message.
            return "Something went wrong with %s" % msg.text
        else:
            try:
                open_prices = []
                high_prices = []
                low_prices = []
                close_prices = []
                dates = []
                volumes = []
                for result in response['results']:
                    open_prices.append(result['open'])
                    high_prices.append(result['high'])
                    low_prices.append(result['low'])
                    close_prices.append(result['close'])
                    dates.append(result['tradingDay'])
                    volumes.append(result['volume'])

                candle_graph_url = plotly.plot(
                    FigureFactory.create_candlestick(open_prices,
                                                     high_prices,
                                                     low_prices,
                                                     close_prices,
                                                     dates=dates),
                    filename="barchart/price_" + dates[-1],
                    vadlidate=False)

                volume_graph_url = plotly.plot(
                    Data([Scatter(x=dates,
                                  y=volumes)]))

                attachments = [
                    MessageAttachment(fallback="stock price history",
                                      title="stock price history",
                                      title_link=candle_graph_url,
                                      image_url=candle_graph_url + ".png"),
                    MessageAttachment(fallback="volume history",
                                      title="volume history",
                                      title_link=volume_graph_url,
                                      image_url=volume_graph_url + ".png")]

                return SlackMessage(
                    text="Stock price history for %s" % msg.text,
                    attachments=attachments)
            except Exception as e:
                # Response handling error
                logging.error(e)
                return "Something went wrong with %s" % msg.text

    else:
        return "Please enter ticker symbol."
开发者ID:oklahomer,项目名称:sarah-plugins,代码行数:58,代码来源:barchart.py

示例2: make_plotly_figs

def make_plotly_figs():
    from plotly.tools import FigureFactory as FF

    import numpy as np

    x1 = np.random.randn(200)

    hist_data = [x1]

    group_labels = ['Group 1']

    # Create distplot with curve_type set to 'normal'
    fig = FF.create_distplot(hist_data, group_labels, bin_size=.25, show_curve=False)

    # Add title
    fig['layout'].update(title='Plot')
    return [fig]
开发者ID:aretha-hep,项目名称:aretha-web,代码行数:17,代码来源:make_plots.py

示例3: dist_plot

def dist_plot(df, 
              groupby=None,
              val=None,
              bin_size=1, 
              title=None,
              show_hist=True,
              show_kde=True, 
              show_rug=True, 
              show_legend=True, 
              figsize=None,
              outfile=None,
              xlabel=None,
              ylabel=None):
    
    if groupby is None:
        fig = FF.create_distplot([df[c] for c in df.columns], 
                                     df.columns.values.tolist(), 
                                     bin_size=bin_size,
                                     show_rug=show_rug,
                                     show_curve=show_kde)
    else:
        groups = sorted(df[groupby].unique().tolist(), reverse=True)
        data = []
        if val is None:
            val = df.columns.drop(groupby)[0]  # choose first non-groupby column
            
        for group in groups:
            mask = df[groupby] == group
            data.append(df.loc[mask, val])
            
        fig = FF.create_distplot(data, 
                                 groups, 
                                 bin_size=bin_size,
                                 show_hist=show_hist,
                                 show_rug=show_rug,
                                 show_curve=show_kde)
        
    fig['layout'].update(showlegend=show_legend)
    
    if title:
        fig['layout'].update(title=title)

    if xlabel:
        fig['layout'].update(xaxis=go.XAxis(title=xlabel))

    if ylabel:
        fig['layout'].update(yaxis=go.YAxis(title=ylabel))


        
    if figsize and len(figsize) == 2:
        fig['layout'].update(width=figsize[0])
        fig['layout'].update(height=figsize[1])
        
    ol.iplot(fig, show_link=False)
    
    # write figure to HTML file
    if outfile:
        print('Exporting copy of figure to %s...' % outfile)
        ol.plot(fig, auto_open=False, filename=outfile)
开发者ID:dustinstansbury,项目名称:quick_plotly,代码行数:60,代码来源:quick_plotly.py

示例4: pretty_table

def pretty_table(df, outfile=None):
    """
    Display pandas dataframe as a nicely-formated HTML

    Parameters
    ----------
    outfile: filepath str
        If provided, output to an HTML file at provided location

    Example
    -------
    import pandas as pd
    
    animals = pd.DataFrame([
              ['cat',10, 'housepet'],
              ['dog',20,'housepet'],
              ['fish',5,'housepet'],
              ['cat',20,'zooanimal'],
              ['dog',50,'zooanimal'],
              ['fish',20,'zooanimal'],], columns=['animal','value','group'])

    pretty_table(animals)

    """
    
    table = FF.create_table(df)
    ol.iplot(table, show_link=False)

    # write figure to HTML file
    if outfile:
        print('Exporting copy of figure to %s...' % outfile)
        ol.plot(table, auto_open=False, filename=outfile)
开发者ID:dustinstansbury,项目名称:quick_plotly,代码行数:32,代码来源:quick_plotly.py

示例5: scatter_matrix

    def scatter_matrix(self, dataframe, select_columns=None, index_colname=None,
                       diag_kind='scatter',
                       marker_size=10, height=800, width=1000, marker_outline_width=0,
                       marker_outline_color='black'):
        """
        Create a scatter matrix plot from dataframes using Plotly.

        Args:
            dataframe: (array) array of the data with column headers
            select_columns: (list) names/headers of columns to plot from the dataframe
            index_colname: (str) name of the index column in data array
            diag_kind: (str) sets the chart type for the main diagonal plots (default='scatter')
                Choose from 'scatter'/'box'/'histogram'
            marker_size: (float) sets the marker size (in px)
            height: (int/float) sets the height of the chart
            width: (int/float) sets the width of the chart
            marker_outline_width: (int) thickness of marker outline (currently affects the outline of histograms too
                when "diag_kind" = 'histogram')
            marker_outline_color: (str/array) color of marker outline - accepts similar formats as other color variables

        Returns: a Plotly scatter matrix plot

        """
        df = dataframe[select_columns] if select_columns else dataframe
        fig = FF.create_scatterplotmatrix(df, index=index_colname, diag=diag_kind, size=marker_size,
                                          height=height, width=width)

        # Add outline to markers
        for trace in fig['data']:
            trace['marker']['line'] = dict(width=marker_outline_width, color=marker_outline_color)

        self.create_plot(fig)
开发者ID:matk86,项目名称:MatMiner,代码行数:32,代码来源:make_plots.py

示例6: add_surface

    def add_surface(self, xyz, triangles, lighting=None, **kwargs):
        """Add a surface model to the plotly figure.

        xyz : array, shape (n_vertices, 3)
            An xyz array defining the position of each vertex in 3-D
        triangles : array, shape (n_triangles, 3)
            An ijk array defining triangles for the mesh. Each row
            indexes 3 rows of in xyz, which together make a triangle.
        lighting : None | dict
            A dictionary specifying lighting parameters in plotly
        """
        if lighting is None:
            lighting = dict(ambient=.4, specular=1)
        self.xyz = xyz
        self.x = xyz.T[0]
        self.y = xyz.T[1]
        self.z = xyz.T[2]
        self.triangles = triangles
        self.xrange = np.array([xyz.min(0)[0], xyz.max(0)[0]])
        self.yrange = np.array([xyz.min(0)[1], xyz.max(0)[1]])
        self.zrange = np.array([xyz.min(0)[2], xyz.max(0)[2]])

        colors = self.cmap(np.repeat(.5, len(triangles)))
        colors = array_to_plotly(colors)
        self.surfacedata = ff._trisurf(
            x=self.x, y=self.y, z=self.z, simplices=self.triangles,
            color_func=colors, **kwargs)
        self.surfacedata[0]['lighting'] = lighting
        self.facecolors = self.surfacedata[0]['facecolor'].copy()
        self.tri_centroids = xyz[triangles].mean(1)
        self.layout['scene'].update(dict(xaxis=dict(range=self.xrange),
                                         yaxis=dict(range=self.yrange),
                                         zaxis=dict(range=self.zrange)))
开发者ID:monfera,项目名称:ecogtools,代码行数:33,代码来源:viz3d.py

示例7: plot_Age

def plot_Age(path, feature, type_):
    feature = pd.DataFrame(feature)
    feature = feature.reset_index()
    data = folder_reader(path)
    data.columns = ['temperature', 'wind', 'age', 'total']
    aux = data[data.age < 1950]
    aux = aux.groupby(type_)['total'].sum()
    aux = aux.reset_index()
    aux = pd.merge(aux, feature, how='left', left_index=type_, right_index="index")
    number = aux[aux.columns[1]] * 100 / aux[aux.columns[3]]
    Temp_1 = np.repeat(aux[aux.columns[0]].values, number.round(0).astype(int))

    aux = data[data.age >= 1950]
    aux = aux[aux.age < 1985]
    aux = aux.groupby(type_)['total'].sum()
    aux = aux.reset_index()
    aux = pd.merge(aux, feature, how='left', left_index=type_, right_index="index")
    number = aux[aux.columns[1]] * 100 / aux[aux.columns[3]]
    Temp_2 = np.repeat(aux[aux.columns[0]].values, number.round(0).astype(int))

    aux = data[data.age >= 1985]
    aux = aux.groupby(type_)['total'].sum()
    aux = aux.reset_index()
    aux = pd.merge(aux, feature, how='left', left_index="wind", right_index="index")
    number = aux[aux.columns[1]] * 100 / aux[aux.columns[3]]
    Temp_3 = np.repeat(aux[aux.columns[0]].values, number.round(0).astype(int))

    hist_data = [Temp_1, Temp_2, Temp_3]
    group_labels = ['Older than 65', 'Betwen 30-65', 'Younger than 30']
    colors = ['rgb(0, 0, 100)', 'rgb(0, 200, 200)', 'rgb(0, 300, 300)']
    fig = FF.create_distplot(hist_data, group_labels, colors=colors)
    plot_url = py.offline.plot(fig)
开发者ID:obr214,项目名称:BD_FinalProject,代码行数:32,代码来源:plot_functions.py

示例8: main

def main(stock_name, day_in, future):
    """Control DataBase and make graph if have stock_name"""
    year, month, day = 2015, 12, 12
    open_data, close_data, high_data, low_data, values_data, dates = [], [], [], [], [], []
    while day_in > 0:
        file_name = "set-history_EOD_" + "%d-%02d-%02d.csv" % step_day(year, month, day)
        try:
            temporary = csv.reader(open(file_name, "r"))
            bug = 1
            for row in temporary:
                if row[0] == stock_name:
                    bug = 0
                    open_data.append(float(row[2]))
                    high_data.append(float(row[3]))
                    low_data.append(float(row[4]))
                    close_data.append(float(row[5]))
                    values_data.append(float(row[6]) * float(row[5]))
                    dates.append(datetime(year=int(row[1][0:4]), month=int(row[1][4:6]), day=int(row[1][6:])))
            if bug == 1:
                it_bug  ## Make error when that day haven't stock_name
            day_in -= 1
        except:
            day_in -= 1  ## Count All day with have stock or no for can find graph of year from 365 day
        year, month, day = step_day(year, month, day)

    open_data, close_data, high_data, low_data, values_data, dates = (
        open_data[::-1],
        close_data[::-1],
        high_data[::-1],
        low_data[::-1],
        values_data[::-1],
        dates[::-1],
    )
    if len(open_data) == 0:
        return "%s not found" % stock_name
    data_sma, date_sma = make_sma(future, close_data, dates)
    data_ema15, date_ema15 = make_ema(15, close_data, dates)
    data_ema50, date_ema50 = make_ema(50, close_data, dates)

    add_sma = Scatter(x=date_sma, y=data_sma, name="SMA%d" % (future), line=Line(color="rgb(166,212,64)"))
    add_ema15 = Scatter(x=date_ema15, y=data_ema15, name="EMA15", line=Line(color="purple"))
    add_ema50 = Scatter(x=date_ema50, y=data_ema50, name="EMA50", line=Line(color="blue"))
    add_high = Scatter(x=dates, y=[max(high_data) for i in range(len(dates))], name="HIGH", line=Line(color="black"))
    add_low = Scatter(x=dates, y=[min(low_data) for i in range(len(dates))], name="LOW", line=Line(color="black"))

    fig = FF.create_candlestick(open_data, high_data, low_data, close_data, dates=dates)
    fig["layout"].update({"title": stock_name, "yaxis": {"title": "Price"}, "xaxis": {"title": "Dates"}})
    fig["data"].extend([add_high])
    fig["data"].extend([add_low])
    fig["data"].extend([add_sma])
    fig["data"].extend([add_ema15])
    fig["data"].extend([add_ema50])
    plot_url = py.plot(fig, filename="candlestick", validate=False)

    data = [go.Bar(x=dates, y=values_data)]
    layout = go.Layout(title="Values of %s" % stock_name)
    fig = go.Figure(data=data, layout=layout)
    plot_url = py.plot(fig, filename="text-hover-bar")
    return "Graph %s Success" % stock_name
开发者ID:armhansa,项目名称:Once-upon-a-time-Project_PSIT-,代码行数:59,代码来源:Project_Stock_Perfect.py

示例9: financialplots

def financialplots(filename, plotkind):
    try:
        data = pd.read_csv(filename,index_col=0, parse_dates=True)
    except(FileNotFoundError, IOError):
        print('Wrong file or file path.')
        return None
    if plotkind == 'candlestick':
        fig = FF.create_candlestick(data['Opening Price'], data['Maximum Price'], data['Minimum Price'], data['Closing Price'],dates=data.index)
    elif plotkind == 'macd':
        fig = data['Closing Price'].ta_plot(study='macd', fast_period=12, slow_period=26, signal_period=9, asFigure=True)
    elif plotkind == 'boll':
        fig = data['Closing Price'].ta_plot(study='boll',asFigure=True)
    elif plotkind == 'ohlc':
        fig = FF.create_ohlc(data['Opening Price'], data['Maximum Price'], data['Minimum Price'], data['Closing Price'],dates=data.index)
    elif plotkind == 'sma':
        fig = data['Closing Price'].ta_plot(study='sma', asFigure=True)
    py.plot(fig,filename='../../plots/'+filename[:-4]+plotkind,validate=False,auto_open=False)
开发者ID:samshara,项目名称:Stock-Market-Analysis-and-Prediction,代码行数:17,代码来源:visualization.py

示例10: plot_tables

def plot_tables():
	data_matrix_dem = [
	['Feature', 'Coeff', 'Std Err', 'P Val'],
	['State Average Turnout', 0.0048, 0.000, 0.000],
	['Rural-urban Continuum Code', 0.0046, 0.000, 0.000],
	['Perc Less than Highschool Diploma', 0.0006, 0.000, 0.000],
	['Perc with Bachelor\'s', 0.0032, 8.54e-05, 0.000],
	['Unemployment Rate', 0.0041, 0.000, 0.000],
	['Religion NMF Feature 1', 0.0091, 0.001, 0.000],
	['Religion NMF Feature 2', 0.0063, 0.000, 0.000],
	['Campaign Expenditure', -4.084e-10, 5.09e-11, 0.000],
	['Cook Index', 0.4752, 0.006, 0.000],
	['Change in Vote Share 2008->2012', 0.2689, 0.024, 0.000],
	['1 Field Office', 0.0088, 0.002, 0.000],
	['2+ Field Offices', 0.0257, 0.004, 0.000],
	['Field Office - Cook Index Interaction', 0.0348, 0.017, 0.041]
	]

	data_matrix_rep =[
	['Feature', 'Coeff', 'Std Err', 'P Val'],
	['State Average Turnout', 0.0060, 0.000, 0.000],
	['Rural-urban Continuum Code', 0.0044, 0.000, 0.000],
	['Perc Less than Highschool Diploma', -0.0024, 0.000, 0.000],
	['Perc with Bachelor\'s', 0.0025, 0.000, 0.000],
	['Unemployment Rate', 0.0054, 0.000, 0.000],
	['Religion NMF Feature 1', 0.0003, 0.001, 0.700],
	['Religion NMF Feature 2', 0.0072, 0.001, 0.000],
	['Campaign Expenditure', -4.905e-10, 6.44e-11, 0.000],
	['Cook Index', -0.5827, 0.008, 0.000],
	['Change in Vote Share 2008->2012', -0.0543, 0.032, 0.000],
	['1 Field Office', 0.0087, 0.004, 0.025],
	['2+ Field Offices', 0.0143, 0.008, 0.080],
	['Field Office - Cook Index Interaction', -.1054, 0.029, 0.000]
	]

	table_dem = FF.create_table(data_matrix_dem)
	table_dem.layout.update({'title': 'Democratic Regression<br><i>Adj R2 0.978<i>'})
	table_rep = FF.create_table(data_matrix_rep)
	table_rep.layout.update({'title': 'Republican Regression<br><i>Adj R2 0.982<i>'})

	# fig = tools.make_subplots(rows=1, cols=2, subplot_titles=('Democratic Regression<br><i>Adj R2 0.978<i>', 
	#  	                                                      'Republican Regression<br><i>Adj R2 0.982<i>'))

	plot_url = py.plot(table_dem, filename='Dem Regression Results')
	plot_url = py.plot(table_rep, filename='Rep Regression Results')
开发者ID:SGShuman,项目名称:ground_game,代码行数:45,代码来源:visualize.py

示例11: build_plotly_table

def build_plotly_table(plotly_df):
    plotly_df = plotly_df[['Passer_Name', 'Receiver_Name', 'Assists']]
    plotly_df = plotly_df.sort_values(by='Assists', ascending=False)
    plotly_df = plotly_df.head(25)
    plotly_df.columns = ['Passer', 'Receiver', 'Assists']
    plotly_df = plotly_df.as_matrix()
    plotly_df = np.insert(plotly_df, 0, np.array(('Passer', 'Receiver', 'Assists')), 0)

    table = FF.create_table(plotly_df)
    py.iplot(table, filename='assist_pairs')
开发者ID:PhilJFry32,项目名称:NBA-Python,代码行数:10,代码来源:p2p_assists.py

示例12: make_candlestick

def make_candlestick(gamelog, column, reduce_func=None):
    base_series = gamelog.set_index("Date")[column]
    if reduce_func:
        series = reduce_func(base_series).dropna()
    else:
        series = base_series.cumsum().dropna()
    weekdata = list(create_weekly(series))
    weeks = pd.DataFrame(weekdata).dropna()
    fig = FF.create_candlestick(weeks.Open, weeks.High, weeks.Low, weeks.Close,
        dates=weeks.start_date)
    fig['layout'].update(height=600, width=600, title=column)
    return fig
开发者ID:ktarrant,项目名称:DanielHitsMurphy,代码行数:12,代码来源:plot.py

示例13: search

 def search(self, data_rows, key):
     data = data_rows[0]
     if key == 'searchUser':
         data_matrix = [['Username', 'Count'],
                 [data[0], data[1]]]
     elif key == 'searchSubred':
         data_matrix = [['Subreddit', 'Count'],
                 [data[0], data[1]]]
        
     colorscale = [[0, '#4d004c'], [.5, '#ffffff'], [1, '#f2e5ff']]
     table = FF.create_table(data_matrix, colorscale=colorscale)
     plotted = plotly.offline.plot(table, filename='../graphs.html')
     return plotted
开发者ID:anjrav,项目名称:Reddit_Analysis,代码行数:13,代码来源:DataMining.py

示例14: scatter_matrix

    def scatter_matrix(self, dataframe, select_columns=None, index_colname=None, diag_kind='scatter',
                       marker_size=10, height=800, width=1000, marker_outline_width=0, marker_outline_color='black'):
        """
        Create a scatter matrix plot from dataframes using Plotly.

        Args:
            dataframe: (array) array of the data with column headers
            select_columns: (list) names/headers of columns to plot from the dataframe
            index_colname: (str) name of the index column in data array
            diag_kind: (str) sets the chart type for the main diagonal plots (default='scatter')
                Choose from 'scatter'/'box'/'histogram'
            marker_size: (float) sets the marker size (in px)
            height: (int/float) sets the height of the chart
            width: (int/float) sets the width of the chart
            marker_outline_width: (int) thickness of marker outline (currently affects the outline of histograms too
                when "diag_kind" = 'histogram')
            marker_outline_color: (str/array) color of marker outline - accepts similar formats as other color variables

        Returns: a Plotly scatter matrix plot

        """
        df = dataframe[select_columns] if select_columns else dataframe
        fig = FF.create_scatterplotmatrix(df, index=index_colname, diag=diag_kind, size=marker_size,
                                              height=height, width=width)

        # Add outline to markers
        for trace in fig['data']:
            trace['marker']['line'] = dict(width=marker_outline_width, color=marker_outline_color)

        if self.plot_mode == 'offline':
            if self.filename:
                plotly.offline.plot(fig, filename=self.filename)
            else:
                plotly.offline.plot(fig)

        elif self.plot_mode == 'notebook':
            plotly.offline.init_notebook_mode()  # run at the start of every notebook; version 1.9.4 required
            plotly.offline.iplot(fig)

        elif self.plot_mode == 'online':
            plotly.tools.set_credentials_file(username=self.username, api_key=self.api_key)
            if self.filename:
                plotly.plotly.plot(fig, filename=self.filename, sharing='public')
            else:
                plotly.plotly.plot(fig, sharing='public')

        elif self.plot_mode == 'static':
            plotly.plotly.image.save_as(fig, filename=self.filename, height=self.height, width=self.width,
                                        scale=self.scale)
开发者ID:hackingmaterials,项目名称:FigRecipes,代码行数:49,代码来源:make_plots.py

示例15: readAssetReturnsCSV

def readAssetReturnsCSV(asset):
    df = pandas.read_csv('../../Daily/' + asset + '.csv')
    df['Index'] = pandas.to_datetime(df['Index']) # convert dates to Datetime objects
    df = df.set_index('Index') # set Index
    df = df.sort_index() # sort by date

    # Will store the weekly data
    df_calcs = pandas.DataFrame(columns=['period_ended', 'open', 'high', 'low', 'close', 'volume',
                                         'adj.', 'weekly_return'])

    # compute weekly returns only across full trading weeks (Monday -> Friday)
    for index, row in df.iterrows():
         date = pandas.to_datetime(index)
         if date.weekday() == 4: # is Friday
             thur = date + datetime.timedelta(days=-1)
             wed = date + datetime.timedelta(days=-2)
             tues = date + datetime.timedelta(days=-3)
             mon = date + datetime.timedelta(days=-4)
             # trading occurred on corresponding Friday
             if thur in df.index and wed in df.index and tues in df.index and mon in df.index:
                 period_ended = date
                 open = df.loc[mon]['open']
                 close = row['close']
                 low = min(df.loc[mon]['low'], df.loc[tues]['low'], df.loc[wed]['low'], df.loc[thur]['low'],
                           row['close'])
                 high = max(df.loc[mon]['high'], df.loc[tues]['high'], df.loc[wed]['high'], df.loc[thur]['high'],
                           row['high'])
                 volume = df.loc[mon]['volume'] + df.loc[tues]['volume'] + df.loc[wed]['volume'] + \
                          df.loc[thur]['volume'] + row['volume']
                 adj = row['adj.']
                 weekly_return = (row['adj.'] - df.loc[mon]['adj.']) / df.loc[mon]['adj.']
                 #print(mon, '(', df.loc[mon]['adj.'], ') ->', date, '(', row['adj.'], '):', weekly_return*100, '%')
                 week = pandas.Series([period_ended, open, high, low, close, volume, adj, weekly_return])
                 week = week.rename({0: 'period_ended', 1: 'open', 2: 'high', 3: 'low', 4: 'close', 5: 'volume',
                                     6: 'adj.', 7: 'weekly_return'})
                 df_calcs = df_calcs.append(week, ignore_index=True)
    df_calcs = df_calcs.set_index('period_ended') # set index to period_ended

    # standardize weekly returns
    df_calcs['std_return'] = (df_calcs['weekly_return'] - df_calcs['weekly_return'].mean()) / \
                             df_calcs['weekly_return'].std()

    # save OHLC data
    ohlc = FF.create_ohlc(df_calcs.open, df_calcs.high, df_calcs.low, df_calcs.close, dates=df_calcs.index)

    return Asset.Asset(asset, df_calcs, ohlc)
开发者ID:ab4es,项目名称:google-trends,代码行数:46,代码来源:IOHandler.py


注:本文中的plotly.tools.FigureFactory类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。