当前位置: 首页>>代码示例>>Python>>正文


Python optimize.LBFGS类代码示例

本文整理汇总了Python中pele.optimize.LBFGS的典型用法代码示例。如果您正苦于以下问题:Python LBFGS类的具体用法?Python LBFGS怎么用?Python LBFGS使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了LBFGS类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: lbfgs_py

def lbfgs_py(coords, pot, **kwargs):
    if not hasattr(pot, "getEnergyGradient"):
        # for compatibility with old quenchers.
        # assume pot is a getEnergyGradient function
        pot = _getEnergyGradientWrapper(pot)
    lbfgs = LBFGS(coords, pot, **kwargs)    
    return lbfgs.run()
开发者ID:borislavujo,项目名称:pele,代码行数:7,代码来源:_quench.py

示例2: runtest

def runtest(X, pot, natoms = 100, iprint=-1):
    from _lbfgs_py import PrintEvent
    tol = 1e-5
    maxstep = 0.005

    Xinit = np.copy(X)
    e, g = pot.getEnergyGradient(X)
    print "energy", e
    
    lbfgs = LBFGS(X, pot, maxstep = 0.1, nsteps=10000, tol=tol,
                  iprint=iprint, H0=2.)
    printevent = PrintEvent( "debugout.xyz")
    lbfgs.attachEvent(printevent)
    
    ret = lbfgs.run()
    print ret
    
    print ""
    print "now do the same with scipy lbfgs"
    from pele.optimize import lbfgs_scipy as quench
    ret = quench(Xinit, pot, tol = tol)
    print ret
    #print ret[1], ret[2], ret[3]    
    
    if False:
        print "now do the same with scipy bfgs"
        from pele.optimize import bfgs as oldbfgs
        ret = oldbfgs(Xinit, pot, tol = tol)
        print ret
    
    if False:
        print "now do the same with gradient + linesearch"
        import _bfgs
        gpl = _bfgs.GradientPlusLinesearch(Xinit, pot, maxstep = 0.1)  
        ret = gpl.run(1000, tol = 1e-6)
        print ret
            
    if False:
        print "calling from wrapper function"
        from pele.optimize import lbfgs_py
        ret = lbfgs_py(Xinit, pot, tol = tol)
        print ret
        
    if True:
        print ""
        print "now do the same with lbfgs_py"
        from pele.optimize import lbfgs_py
        ret = lbfgs_py(Xinit, pot, tol = tol)
        print ret



    try:
        import pele.utils.pymolwrapper as pym
        pym.start()
        for n, coords in enumerate(printevent.coordslist):
            coords=coords.reshape(natoms, 3)
            pym.draw_spheres(coords, "A", n)
    except ImportError:
        print "error loading pymol"
开发者ID:borislavujo,项目名称:pele,代码行数:60,代码来源:_mylbfgs.py

示例3: test_event

 def test_event(self):
     self.called = False
     def event(coords=None, energy=None, rms=None):
         self.called = True
     
     opt = LBFGS(self.x0, self.pot, events=[event])
     opt.one_iteration()
     self.assertTrue(self.called)
开发者ID:dimaslave,项目名称:pele,代码行数:8,代码来源:test_lbfgs.py

示例4: _lbfgs_py

def _lbfgs_py(coords, pot, **kwargs):
    lbfgs = LBFGS(coords, pot, **kwargs)
    
    ret = lbfgs.run()
    coords = ret.coords
    e = ret.energy
    rms = ret.rms
    funcalls = ret.nfev
    return coords, e, rms, funcalls, ret
开发者ID:borislavujo,项目名称:pele,代码行数:9,代码来源:_quench_obsolete.py

示例5: test

    def test(self):
        minimizer = LBFGS(self.x.copy(), self.pot, fortran=True, debug=True)
        ret = minimizer.run()
        m2 = LBFGS(self.x.copy(), self.pot, fortran=False, debug=True)
        ret2 = m2.run()

        print "fortran", ret.nfev, ret2.nfev
        # self.assertEqual(ret.nfev, ret2.nfev)
        self.assertAlmostEqual(ret.energy, ret2.energy, 5)
开发者ID:Mahdisadjadi,项目名称:pele,代码行数:9,代码来源:test_lbfgs.py

示例6: test

 def test(self):
     minimizer = LBFGS(self.x.copy(), self.pot, armijo=True, debug=True)
     ret = minimizer.run()
     self.assertTrue(ret.success)
     
     print "\n\n"
     minimizer = LBFGS(self.x.copy(), self.pot, armijo=False, debug=True)
     ret_nowolfe = minimizer.run()
     self.assertTrue(ret_nowolfe.success)
     
     print "nfev armijo, noarmijo", ret.nfev, ret_nowolfe.nfev, ret.energy, ret_nowolfe.energy
开发者ID:borislavujo,项目名称:pele,代码行数:11,代码来源:_test_lbfgs.py

示例7: run

def run(X_train):
    # fit a Gaussian Mixture Model with two components
    clf = mixture.GMM(n_components=2, covariance_type='full')
    
    pot = GMMPotential(clf, X_train)
    params = pot.get_random_coords()
    print params
    e, g = pot.getEnergyGradient(params)
    print "energy", e
    print "grad", g
    opt = LBFGS(params, pot, tol=1e-5, maxstep=1., iprint=1)#, events=[print_event])
    res = opt.run()
    
    print "finished"
    e, g = pot.getEnergyGradient(res.coords)
    print "energy", e
    print "grad"
    print "grad", g

    
#    raise Exception("exiting early")
    
#    clf.fit(X_train)
    
    print "weights"
    print clf.covars_
    
    print "\nmeans"
    print clf.means_
    
    print "\ncovariances"
    print clf.covars_
    
    # display predicted scores by the model as a contour plot
    x = np.linspace(-20.0, 30.0)
    y = np.linspace(-20.0, 40.0)
    X, Y = np.meshgrid(x, y)
    XX = np.array([X.ravel(), Y.ravel()]).T
    Z = -clf.score_samples(XX)[0]
    Z = Z.reshape(X.shape)
    
    CS = plt.contour(X, Y, Z, norm=LogNorm(vmin=1.0, vmax=1000.0),
                     levels=np.logspace(0, 3, 10))
    CB = plt.colorbar(CS, shrink=0.8, extend='both')
    plt.scatter(X_train[:, 0], X_train[:, 1], .8)
    
    plt.title('Negative log-likelihood predicted by a GMM')
    plt.axis('tight')
    make_ellipses(clf, plt.gca())
    plt.show()
开发者ID:js850,项目名称:machine_learning_landscapes,代码行数:50,代码来源:gaussian_mixtures.py

示例8: __init__

 def __init__(self, coords, potential, eigenvec, 
              quenchRoutine=None, **minimizer_kwargs):
     self.dimer_potential = _DimerPotential(potential, eigenvec)
     if quenchRoutine:
         self.minimizer = quenchRoutine(coords, self.dimer_potential, **minimizer_kwargs)
     else:
         self.minimizer = LBFGS(coords, self.dimer_potential, **minimizer_kwargs)
开发者ID:matthewghgriffiths,项目名称:pele,代码行数:7,代码来源:_dimer_translator.py

示例9: __init__

    def __init__(self, coords, potential, eigenvec, energy=None, gradient=None, **minimizer_kwargs):
        self.tspot = _TransversePotential(potential, eigenvec)
        if energy is not None and gradient is not None:
            transverse_energy, transverse_gradient = self.tspot.projected_energy_gradient(energy, gradient)
        else:
            transverse_energy, transverse_gradient = None, None

        self.walker = LBFGS(coords, self.tspot,
                            energy=transverse_energy, gradient=transverse_gradient,
                            **minimizer_kwargs)
开发者ID:pele-python,项目名称:pele,代码行数:10,代码来源:_transverse_walker.py

示例10: setUp1

 def setUp1(self, verbose=False, **kwargs):
     np.random.seed(0)
     natoms = 18
     self.system = LJCluster(natoms)
     self.pot = self.system.get_potential()
     x = self.system.get_random_configuration()
     ret = lbfgs_py(x, self.pot, tol=10)
     self.x = ret.coords
     
     self.kwargs = kwargs
     self.verbose = verbose
 
     self.M = 4
     if self.verbose: iprint=1
     else: iprint = -1
     self.myo = MYLBFGS(self.x, self.pot, iprint=iprint, debug=True, M=self.M)
     self.o = LBFGS(self.x, self.pot, iprint=iprint, debug=True, M=self.M, **self.kwargs)
开发者ID:Mahdisadjadi,项目名称:pele,代码行数:17,代码来源:_test_mylbfgs_vs_lbfgs.py

示例11: TestLBFGS_State

class TestLBFGS_State(unittest.TestCase):
    def setUp(self):
        self.system = LJCluster(13)
        self.x = self.system.get_random_configuration()
        self.pot = self.system.get_potential()
        self.minimizer = LBFGS(self.x, self.pot)
    
    def test_state(self):
        # do several minimization iterations
        for i in xrange(10):
            self.minimizer.one_iteration()
        
        # get the state and save it
        ret = self.minimizer.get_result()
        state = self.minimizer.get_state()
        x1 = ret.coords.copy()
        
        # do several more iteration steps
        for i in xrange(10):
            self.minimizer.one_iteration()
        
        # now make a new minimizer and do several iterations
        minimizer2 = LBFGS(x1, self.pot)
        minimizer2.set_state(state)
        for i in xrange(10):
            minimizer2.one_iteration()
        
        # test that the two minimizers are in the same state
        ret1 = self.minimizer.get_result()
        ret2 = minimizer2.get_result()
        self.assertEqual(ret1.energy, ret2.energy)
        self.assertTrue((ret1.coords == ret2.coords).all())
        
        state1 = self.minimizer.get_state()
        state2 = minimizer2.get_state()
        
        self.assertTrue((state1.y == state2.y).all())
        self.assertTrue((state1.s == state2.s).all())
        self.assertTrue((state1.rho == state2.rho).all())
        self.assertTrue((state1.dXold == state2.dXold).all())
        self.assertTrue((state1.dGold == state2.dGold).all())
        self.assertEqual(state1.H0, state2.H0)
        self.assertEqual(state1.k, state2.k)
开发者ID:borislavujo,项目名称:pele,代码行数:43,代码来源:_test_lbfgs.py

示例12: test_state

    def test_state(self):
        # do several minimization iterations
        for i in xrange(10):
            self.minimizer.one_iteration()

        # get the state and save it
        ret = self.minimizer.get_result()
        state = self.minimizer.get_state()
        x1 = ret.coords.copy()

        # do several more iteration steps
        for i in xrange(10):
            self.minimizer.one_iteration()

        # now make a new minimizer and do several iterations
        minimizer2 = LBFGS(x1, self.pot)
        minimizer2.set_state(state)
        for i in xrange(10):
            minimizer2.one_iteration()

        # test that the two minimizers are in the same state
        ret1 = self.minimizer.get_result()
        ret2 = minimizer2.get_result()
        self.assertEqual(ret1.energy, ret2.energy)
        self.assertTrue((ret1.coords == ret2.coords).all())

        state1 = self.minimizer.get_state()
        state2 = minimizer2.get_state()

        self.assertTrue((state1.y == state2.y).all())
        self.assertTrue((state1.s == state2.s).all())
        self.assertTrue((state1.rho == state2.rho).all())
        self.assertTrue((state1.dXold == state2.dXold).all())
        self.assertTrue((state1.dGold == state2.dGold).all())
        self.assertEqual(state1.H0, state2.H0)
        self.assertEqual(state1.k, state2.k)
开发者ID:Mahdisadjadi,项目名称:pele,代码行数:36,代码来源:test_lbfgs.py

示例13: __init__

 def __init__(self, coords, potential, eigenvec, **minimizer_kwargs):
     self.dimer_potential = _DimerPotential(potential, eigenvec)
     self.minimizer = LBFGS(coords, self.dimer_potential, **minimizer_kwargs)
开发者ID:Mahdisadjadi,项目名称:pele,代码行数:3,代码来源:_dimer_translator.py

示例14: TestLBFGS_State

class TestLBFGS_State(unittest.TestCase):
    def setUp(self):
        self.system = LJCluster(13)
        self.x = self.system.get_random_configuration()
        self.pot = self.system.get_potential()
        self.minimizer = LBFGS(self.x, self.pot)

    def test_state(self):
        # do several minimization iterations
        for i in xrange(10):
            self.minimizer.one_iteration()

        # get the state and save it
        ret = self.minimizer.get_result()
        state = self.minimizer.get_state()
        x1 = ret.coords.copy()

        # do several more iteration steps
        for i in xrange(10):
            self.minimizer.one_iteration()

        # now make a new minimizer and do several iterations
        minimizer2 = LBFGS(x1, self.pot)
        minimizer2.set_state(state)
        for i in xrange(10):
            minimizer2.one_iteration()

        # test that the two minimizers are in the same state
        ret1 = self.minimizer.get_result()
        ret2 = minimizer2.get_result()
        self.assertEqual(ret1.energy, ret2.energy)
        self.assertTrue((ret1.coords == ret2.coords).all())

        state1 = self.minimizer.get_state()
        state2 = minimizer2.get_state()

        self.assertTrue((state1.y == state2.y).all())
        self.assertTrue((state1.s == state2.s).all())
        self.assertTrue((state1.rho == state2.rho).all())
        self.assertTrue((state1.dXold == state2.dXold).all())
        self.assertTrue((state1.dGold == state2.dGold).all())
        self.assertEqual(state1.H0, state2.H0)
        self.assertEqual(state1.k, state2.k)

    def test_reset(self):
        # do several minimization iterations
        m1 = LBFGS(self.x, self.pot)
        for i in xrange(10):
            m1.one_iteration()

        # reset the minimizer and do it again
        m1.reset()
        e, g = self.pot.getEnergyGradient(self.x)
        m1.update_coords(self.x, e, g)
        for i in xrange(10):
            m1.one_iteration()

        # do the same number of steps of a new minimizer
        m2 = LBFGS(self.x, self.pot)
        for i in xrange(10):
            m2.one_iteration()

        # they should be the same (more or less)
        n = min(m1.k, m1.M)
        self.assertAlmostEqual(m1.H0, m2.H0, 5)
        self.assertEqual(m1.k, m2.k)
        arrays_nearly_equal(self, m1.y[:n, :], m2.y[:n, :])
        arrays_nearly_equal(self, m1.s[:n, :], m2.s[:n, :])
        arrays_nearly_equal(self, m1.rho[:n], m2.rho[:n])

        res1 = m1.get_result()
        res2 = m2.get_result()
        self.assertNotEqual(res1.nfev, res2.nfev)
        self.assertNotEqual(res1.nsteps, res2.nsteps)
        self.assertAlmostEqual(res1.energy, res2.energy)
        arrays_nearly_equal(self, res1.coords, res2.coords)
开发者ID:Mahdisadjadi,项目名称:pele,代码行数:76,代码来源:test_lbfgs.py

示例15: setUp

 def setUp(self):
     self.system = LJCluster(13)
     self.x = self.system.get_random_configuration()
     self.pot = self.system.get_potential()
     self.minimizer = LBFGS(self.x, self.pot)
开发者ID:Mahdisadjadi,项目名称:pele,代码行数:5,代码来源:test_lbfgs.py


注:本文中的pele.optimize.LBFGS类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。