本文整理汇总了Python中pathos.multiprocessing.ProcessingPool类的典型用法代码示例。如果您正苦于以下问题:Python ProcessingPool类的具体用法?Python ProcessingPool怎么用?Python ProcessingPool使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了ProcessingPool类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _featurize_complexes
def _featurize_complexes(self, df, featurizer, parallel=True,
worker_pool=None):
"""Generates circular fingerprints for dataset."""
protein_pdbs = list(df["protein_pdb"])
ligand_pdbs = list(df["ligand_pdb"])
complexes = zip(ligand_pdbs, protein_pdbs)
def featurize_wrapper(ligand_protein_pdb_tuple):
ligand_pdb, protein_pdb = ligand_protein_pdb_tuple
print("Featurizing %s" % ligand_pdb[0:2])
molecule_features = featurizer.featurize_complexes([ligand_pdb], [protein_pdb])
return molecule_features
if worker_pool is None:
features = []
for ligand_protein_pdb_tuple in zip(ligand_pdbs, protein_pdbs):
features.append(featurize_wrapper(ligand_protein_pdb_tuple))
else:
if worker_pool is None:
worker_pool = ProcessingPool(mp.cpu_count())
features = worker_pool.map(featurize_wrapper,
zip(ligand_pdbs, protein_pdbs))
else:
features = worker_pool.map_sync(featurize_wrapper,
zip(ligand_pdbs, protein_pdbs))
#features = featurize_wrapper(zip(ligand_pdbs, protein_pdbs))
df[featurizer.__class__.__name__] = list(features)
示例2: compute_importance
def compute_importance(self, alpha):
"""
"""
pool = ProcessingPool(self._numJobs)
errors = pool.map(self._computeImportanceOfTree,
[alpha] * self._numTree, range(self._numTree))
return np.array(errors).mean(axis=0)
示例3: run_all_control_analysis
def run_all_control_analysis(self):
dirs = dir_walker(self.encode_root)
control_dir = None
for d in dirs:
if 'control' in d.lower():
control_dir = d
assert control_dir is not None
replicates = dir_walker(control_dir, level=1)
pool = ProcessingPool(nodes=14)
pool.map(self.control_analysis, tuple(replicates))
return replicates
示例4: register_stack_to_template
def register_stack_to_template(frames, template, regfn, njobs=4, **fnargs):
"""
Given stack of frames (or a FSeq obj) and a template image,
align every frame to template and return a list of functions,
which take an image and return warped image, aligned to template.
"""
if njobs > 1:
pool = ProcessingPool(nodes=njobs)
out = pool.map(partial(regfn, template=template, **fnargs), frames)
else:
out = np.array([regfn(img, template, **fnargs) for img in frames])
return out
示例5: main
def main():
from hyperopt import fmin,tpe,hp,Trials
from hyperopt.mongoexp import MongoTrials
import os
fit_params=eval(open('fit_parameters.txt').read())
fit_params['root']=os.getcwd()
directory=init_directory(fit_params)
if fit_params['optimization']=='hyperopt':
space=search_space(fit_params)
trials=Trials()
best=fmin(run,space=space,algo=tpe.suggest,max_evals=fit_params['max_evals'],trials=trials)
plot_results(trials.trials)
#https://github.com/hyperopt/hyperopt/wiki/Parallelizing-Evaluations-During-Search-via-MongoDB
''' commands for MongoDB
mongod --dbpath . --port 1234
export PYTHONPATH=$PYTHONPATH:/home/pduggins/influence_susceptibility_conformity
hyperopt-mongo-worker --mongo=localhost:1234/foo_db --poll-interval=0.1
'''
if fit_params['optimization']=='mongodb':
space=search_space(fit_params)
space['directory']=directory
trials=MongoTrials('mongo://localhost:1234/foo_db/jobs', exp_key='exp4')
best=fmin(run,space=space,algo=tpe.suggest,max_evals=fit_params['max_evals'],trials=trials)
plot_results(trials.trials)
if fit_params['optimization']=='evolve':
from pathos.multiprocessing import ProcessingPool as Pool
from pathos.helpers import freeze_support #for Windows
import numpy as np
import pandas as pd
# freeze_support()
evo_pop=init_evo_pop(fit_params)
pool = Pool(nodes=fit_params['threads'])
for g in range(fit_params['generations']):
exp_params=[value['P'] for value in evo_pop.itervalues()]
fitness_list=pool.map(run, exp_params)
# new_gen_list=tournament_selection(fitness_list,fit_params)
new_gen_list=rank_proportional_selection(fitness_list)
remade_pop=remake(evo_pop,new_gen_list)
mutated_pop=mutate(remade_pop,evo_pop,fit_params)
evo_pop=mutated_pop
# crossed_pop=crossover(mutated_pop)
# evo_pop=crossed_pop
mean_F=np.average([evo_pop[ind]['F'] for ind in evo_pop.iterkeys()])
std_F=np.std([evo_pop[ind]['F'] for ind in evo_pop.iterkeys()])
print '\nGeneration %s: mean_F=%s, std F=%s' %(g+1,mean_F,std_F)
out_pop=pd.DataFrame([evo_pop])
out_pop.reset_index().to_json('evo_pop.json',orient='records')
示例6: apply_warps
def apply_warps(warps, frames, njobs=4):
"""
returns result of applying warps for given frames (one warp per frame)
"""
if njobs > 1 :
pool = ProcessingPool(nodes=njobs)
out = np.array(pool.map(parametric_warp, frames, warps))
else:
out = np.array([parametric_warp(f,w) for f,w in itt.izip(frames, warps)])
if isinstance(frames, fseq.FrameSequence):
out = fseq.open_seq(out)
out.meta = frames.meta
return out
示例7: get_signal_bg_many_parallel
def get_signal_bg_many_parallel(runList, detid, **kwargs):
"""
Return the averaged signal and background (based on blank frames) over the given runs
"""
def mapfunc(run_number):
return get_signal_bg_one_run(run_number, detid, **kwargs)
MAXNODES = 14
pool = ProcessingPool(nodes=min(MAXNODES, len(runList)))
bg = np.zeros(DIMENSIONS_DICT[detid])
signal = np.zeros(DIMENSIONS_DICT[detid])
run_data = pool.map(mapfunc, runList)
for signal_increment, bg_increment in run_data:
signal += (signal_increment / len(runList))
bg += (bg_increment / len(runList))
return signal, bg
示例8: run
def run(non_iter_args, do_multiprocessing):
[
weightcalcdata,
weightcalculator,
box,
startindex,
size,
newconnectionmatrix,
method,
boxindex,
filename,
headerline,
writeoutput,
] = non_iter_args
partial_gaincalc_oneset = partial(
calc_weights_oneset,
weightcalcdata,
weightcalculator,
box,
startindex,
size,
newconnectionmatrix,
method,
boxindex,
filename,
headerline,
writeoutput,
)
if do_multiprocessing:
pool = Pool(processes=pathos.multiprocessing.cpu_count())
pool.map(partial_gaincalc_oneset, weightcalcdata.causevarindexes)
# Current solution to no close and join methods on ProcessingPool
# https://github.com/uqfoundation/pathos/issues/46
s = pathos.multiprocessing.__STATE["pool"]
s.close()
s.join()
pathos.multiprocessing.__STATE["pool"] = None
else:
for causevarindex in weightcalcdata.causevarindexes:
partial_gaincalc_oneset(causevarindex)
return None
示例9: _calculate_s_powder_over_atoms_core
def _calculate_s_powder_over_atoms_core(self, q_indx=None):
"""
Helper function for _calculate_s_powder_1d.
:returns: Python dictionary with S data
"""
atoms_items = {}
atoms = range(self._num_atoms)
self._prepare_data(k_point=q_indx)
if PATHOS_FOUND:
p_local = ProcessingPool(nodes=AbinsModules.AbinsParameters.threads)
result = p_local.map(self._calculate_s_powder_one_atom, atoms)
else:
result = [self._calculate_s_powder_one_atom(atom=atom) for atom in atoms]
for atom in range(self._num_atoms):
atoms_items["atom_%s" % atom] = {"s": result[atoms.index(atom)]}
self._report_progress(msg="S for atom %s" % atom + " has been calculated.")
return atoms_items
示例10: _exec_sample
def _exec_sample(X):
from pathos.multiprocessing import ProcessingPool
try:
p = ProcessingPool(n_cpus)
X = np.array(X)
x = np.array_split(X, n_cpus)
pipe = []
for i in range(n_cpus):
pipe.append(p.apipe(func, x[i]))
rs = []
for i in range(n_cpus):
rs.append(pipe[i].get())
rs = [item for sublist in rs for item in sublist]
return ot.NumericalSample(rs)
except ValueError:
# Get there if the chuck size left some single evaluations left
return func(X)
示例11: transpose_index
def transpose_index(self): # WORKS ONLY FOR TEST DATA
"""Transpose the data according to the index."""
data = self.data
indexes = list(set(data.index))
names, datasets = [], []
for name in indexes:
names.append(name)
datasets.append(data[[name in i for i in data.index]])
plotSets = zip(names, datasets)
pool = ProcessingPool()
plots = []
for name, dataset in plotSets:
plots.append(pool.map(self.create_transposed_plot, [name], [dataset]))
logging.debug('Index transposed')
return plots
示例12: _featurize_compounds
def _featurize_compounds(self, df, featurizer, parallel=True,
worker_pool=None):
"""Featurize individual compounds.
Given a featurizer that operates on individual chemical compounds
or macromolecules, compute & add features for that compound to the
features dataframe
"""
sample_smiles = df["smiles"].tolist()
if worker_pool is None:
features = []
for ind, smiles in enumerate(sample_smiles):
if ind % self.log_every_n == 0:
log("Featurizing sample %d" % ind, self.verbose)
mol = Chem.MolFromSmiles(smiles)
features.append(featurizer.featurize([mol]))
else:
def featurize_wrapper(smiles, dilled_featurizer):
print("Featurizing %s" % smiles)
mol = Chem.MolFromSmiles(smiles)
featurizer = dill.loads(dilled_featurizer)
feature = featurizer.featurize([mol])
return feature
if worker_pool is None:
dilled_featurizer = dill.dumps(featurizer)
worker_pool = ProcessingPool(mp.cpu_count())
featurize_wrapper_partial = partial(featurize_wrapper,
dilled_featurizer=dilled_featurizer)
features = []
for smiles in sample_smiles:
features.append(featurize_wrapper_partial(smiles))
else:
features = worker_pool.map_sync(featurize_wrapper,
sample_smiles)
df[featurizer.__class__.__name__] = features
示例13: parallelmap
def parallelmap(func, data, nodes = None):
"""
Return the averaged signal and background (based on blank frames) over the given runs
"""
if not nodes:
nodes = multiprocessing.cpu_count() - 2
pool = ProcessingPool(nodes=nodes)
try:
return pool.map(func, data)
except KeyboardInterrupt:
pool.terminate()
pool.join()
示例14: image_division
def image_division(self):
image_rows, image_cols = self.__image.shape[:2]
print self.__image.shape[:2]
grid_indices = [
np.array([x, y])
for x in xrange(0, image_cols - self.__GRID_SIZE, self.__GRID_SIZE)
for y in xrange(0, image_rows - self.__GRID_SIZE, self.__GRID_SIZE)
]
pool = Pool()
output = pool.map(self.grid_division, grid_indices)
threshod_sucess_sample = 6
ransacGrouper = RansacLine(1, threshod_sucess_sample, 25, 2)
for index, edgels in enumerate(output):
if len(edgels) > threshod_sucess_sample:
ransacGrouper.edgels = edgels
ransac_groups = ransacGrouper.applay_parallel_ransac()
self.line_segment(ransac_groups)
# print len(self.__lines)
# for line in self.__lines:
# print (line.slope, line.intercept)
# coefficients = np.array([line.slope, line.intercept])
# # print "cof: ", coefficients
# x = np.array([20, 50], dtype=np.int32)
# polynomial = np.poly1d(coefficients)
# # print "Poly: ", polynomial
# y = polynomial(x)
# y = [int(e) for e in y]
# print "x: ", x, "y: ", y
# cv2.line(self.__image, (x[0], y[0]), (x[1], y[1]), (0, 255, 0), 1)
cv2.imshow("image", self.__image)
cv2.waitKey(0)
cv2.destroyAllWindows()
示例15: map
def map(self, f, seq):
"""
Parallel implementation of map.
Parameters
----------
f : callable
A function to map to all the values in 'seq'
seq : iterable
An iterable of values to process with 'f'
Returns
-------
results : list, shape=[len(seq)]
The evaluated values
"""
if self.n_jobs < 1:
n_jobs = multiprocessing.cpu_count()
elif self.n_jobs == 1:
return list(map(f, seq))
else:
n_jobs = self.n_jobs
pool = Pool(n_jobs)
results = list(pool.map(f, seq))
# Closing/joining is not really allowed because pathos sees pools as
# lasting for the duration of the program.
return results