当前位置: 首页>>代码示例>>Python>>正文


Python SparseDataFrame.to_dense方法代码示例

本文整理汇总了Python中pandas.sparse.api.SparseDataFrame.to_dense方法的典型用法代码示例。如果您正苦于以下问题:Python SparseDataFrame.to_dense方法的具体用法?Python SparseDataFrame.to_dense怎么用?Python SparseDataFrame.to_dense使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pandas.sparse.api.SparseDataFrame的用法示例。


在下文中一共展示了SparseDataFrame.to_dense方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: TestSparseDataFrameAnalytics

# 需要导入模块: from pandas.sparse.api import SparseDataFrame [as 别名]
# 或者: from pandas.sparse.api.SparseDataFrame import to_dense [as 别名]
class TestSparseDataFrameAnalytics(tm.TestCase):
    def setUp(self):
        self.data = {'A': [nan, nan, nan, 0, 1, 2, 3, 4, 5, 6],
                     'B': [0, 1, 2, nan, nan, nan, 3, 4, 5, 6],
                     'C': np.arange(10),
                     'D': [0, 1, 2, 3, 4, 5, nan, nan, nan, nan]}

        self.dates = bdate_range('1/1/2011', periods=10)

        self.frame = SparseDataFrame(self.data, index=self.dates)

    def test_cumsum(self):
        result = self.frame.cumsum()
        expected = SparseDataFrame(self.frame.to_dense().cumsum())
        tm.assert_sp_frame_equal(result, expected)

    def test_numpy_cumsum(self):
        result = np.cumsum(self.frame, axis=0)
        expected = SparseDataFrame(self.frame.to_dense().cumsum())
        tm.assert_sp_frame_equal(result, expected)

        msg = "the 'dtype' parameter is not supported"
        tm.assertRaisesRegexp(ValueError, msg, np.cumsum,
                              self.frame, dtype=np.int64)

        msg = "the 'out' parameter is not supported"
        tm.assertRaisesRegexp(ValueError, msg, np.cumsum,
                              self.frame, out=result)
开发者ID:Casyfill,项目名称:Capstone_dashboard,代码行数:30,代码来源:test_frame.py

示例2: TestSparseDataFrameAnalytics

# 需要导入模块: from pandas.sparse.api import SparseDataFrame [as 别名]
# 或者: from pandas.sparse.api.SparseDataFrame import to_dense [as 别名]
class TestSparseDataFrameAnalytics(tm.TestCase):

    def setUp(self):
        self.data = {'A': [nan, nan, nan, 0, 1, 2, 3, 4, 5, 6],
                     'B': [0, 1, 2, nan, nan, nan, 3, 4, 5, 6],
                     'C': np.arange(10, dtype=float),
                     'D': [0, 1, 2, 3, 4, 5, nan, nan, nan, nan]}

        self.dates = bdate_range('1/1/2011', periods=10)

        self.frame = SparseDataFrame(self.data, index=self.dates)

    def test_cumsum(self):
        expected = SparseDataFrame(self.frame.to_dense().cumsum())

        result = self.frame.cumsum()
        tm.assert_sp_frame_equal(result, expected)

        result = self.frame.cumsum(axis=None)
        tm.assert_sp_frame_equal(result, expected)

        result = self.frame.cumsum(axis=0)
        tm.assert_sp_frame_equal(result, expected)

    def test_numpy_cumsum(self):
        result = np.cumsum(self.frame)
        expected = SparseDataFrame(self.frame.to_dense().cumsum())
        tm.assert_sp_frame_equal(result, expected)

        msg = "the 'dtype' parameter is not supported"
        tm.assertRaisesRegexp(ValueError, msg, np.cumsum,
                              self.frame, dtype=np.int64)

        msg = "the 'out' parameter is not supported"
        tm.assertRaisesRegexp(ValueError, msg, np.cumsum,
                              self.frame, out=result)

    def test_numpy_func_call(self):
        # no exception should be raised even though
        # numpy passes in 'axis=None' or `axis=-1'
        funcs = ['sum', 'cumsum', 'var',
                 'mean', 'prod', 'cumprod',
                 'std', 'min', 'max']
        for func in funcs:
            getattr(np, func)(self.frame)
开发者ID:agartland,项目名称:pandas,代码行数:47,代码来源:test_frame.py

示例3: TestSparseDataFrame

# 需要导入模块: from pandas.sparse.api import SparseDataFrame [as 别名]
# 或者: from pandas.sparse.api.SparseDataFrame import to_dense [as 别名]
class TestSparseDataFrame(tm.TestCase, SharedWithSparse):

    klass = SparseDataFrame
    _multiprocess_can_split_ = True

    def setUp(self):
        self.data = {'A': [nan, nan, nan, 0, 1, 2, 3, 4, 5, 6],
                     'B': [0, 1, 2, nan, nan, nan, 3, 4, 5, 6],
                     'C': np.arange(10, dtype=np.float64),
                     'D': [0, 1, 2, 3, 4, 5, nan, nan, nan, nan]}

        self.dates = bdate_range('1/1/2011', periods=10)

        self.orig = pd.DataFrame(self.data, index=self.dates)
        self.iorig = pd.DataFrame(self.data, index=self.dates)

        self.frame = SparseDataFrame(self.data, index=self.dates)
        self.iframe = SparseDataFrame(self.data, index=self.dates,
                                      default_kind='integer')

        values = self.frame.values.copy()
        values[np.isnan(values)] = 0

        self.zorig = pd.DataFrame(values, columns=['A', 'B', 'C', 'D'],
                                  index=self.dates)
        self.zframe = SparseDataFrame(values, columns=['A', 'B', 'C', 'D'],
                                      default_fill_value=0, index=self.dates)

        values = self.frame.values.copy()
        values[np.isnan(values)] = 2

        self.fill_orig = pd.DataFrame(values, columns=['A', 'B', 'C', 'D'],
                                      index=self.dates)
        self.fill_frame = SparseDataFrame(values, columns=['A', 'B', 'C', 'D'],
                                          default_fill_value=2,
                                          index=self.dates)

        self.empty = SparseDataFrame()

    def test_fill_value_when_combine_const(self):
        # GH12723
        dat = np.array([0, 1, np.nan, 3, 4, 5], dtype='float')
        df = SparseDataFrame({'foo': dat}, index=range(6))

        exp = df.fillna(0).add(2)
        res = df.add(2, fill_value=0)
        tm.assert_sp_frame_equal(res, exp)

    def test_as_matrix(self):
        empty = self.empty.as_matrix()
        self.assertEqual(empty.shape, (0, 0))

        no_cols = SparseDataFrame(index=np.arange(10))
        mat = no_cols.as_matrix()
        self.assertEqual(mat.shape, (10, 0))

        no_index = SparseDataFrame(columns=np.arange(10))
        mat = no_index.as_matrix()
        self.assertEqual(mat.shape, (0, 10))

    def test_copy(self):
        cp = self.frame.copy()
        tm.assertIsInstance(cp, SparseDataFrame)
        tm.assert_sp_frame_equal(cp, self.frame)

        # as of v0.15.0
        # this is now identical (but not is_a )
        self.assertTrue(cp.index.identical(self.frame.index))

    def test_constructor(self):
        for col, series in compat.iteritems(self.frame):
            tm.assertIsInstance(series, SparseSeries)

        tm.assertIsInstance(self.iframe['A'].sp_index, IntIndex)

        # constructed zframe from matrix above
        self.assertEqual(self.zframe['A'].fill_value, 0)
        tm.assert_numpy_array_equal(pd.SparseArray([1., 2., 3., 4., 5., 6.]),
                                    self.zframe['A'].values)
        tm.assert_numpy_array_equal(np.array([0., 0., 0., 0., 1., 2.,
                                              3., 4., 5., 6.]),
                                    self.zframe['A'].to_dense().values)

        # construct no data
        sdf = SparseDataFrame(columns=np.arange(10), index=np.arange(10))
        for col, series in compat.iteritems(sdf):
            tm.assertIsInstance(series, SparseSeries)

        # construct from nested dict
        data = {}
        for c, s in compat.iteritems(self.frame):
            data[c] = s.to_dict()

        sdf = SparseDataFrame(data)
        tm.assert_sp_frame_equal(sdf, self.frame)

        # TODO: test data is copied from inputs

        # init dict with different index
        idx = self.frame.index[:5]
#.........这里部分代码省略.........
开发者ID:aechase,项目名称:pandas,代码行数:103,代码来源:test_frame.py

示例4: TestSparseDataFrame

# 需要导入模块: from pandas.sparse.api import SparseDataFrame [as 别名]
# 或者: from pandas.sparse.api.SparseDataFrame import to_dense [as 别名]

#.........这里部分代码省略.........
            self.frame._series,
            index=idx,
            columns=self.frame.columns,
            default_fill_value=self.frame.default_fill_value,
            default_kind=self.frame.default_kind,
        )
        reindexed = self.frame.reindex(idx)
        assert_sp_frame_equal(cons, reindexed)

        # assert level parameter breaks reindex
        self.assertRaises(Exception, self.frame.reindex, idx, level=0)

    def test_constructor_ndarray(self):
        # no index or columns
        sp = SparseDataFrame(self.frame.values)

        # 1d
        sp = SparseDataFrame(self.data["A"], index=self.dates, columns=["A"])
        assert_sp_frame_equal(sp, self.frame.reindex(columns=["A"]))

        # raise on level argument
        self.assertRaises(Exception, self.frame.reindex, columns=["A"], level=1)

        # wrong length index / columns
        self.assertRaises(Exception, SparseDataFrame, self.frame.values, index=self.frame.index[:-1])
        self.assertRaises(Exception, SparseDataFrame, self.frame.values, columns=self.frame.columns[:-1])

    def test_constructor_empty(self):
        sp = SparseDataFrame()
        self.assert_(len(sp.index) == 0)
        self.assert_(len(sp.columns) == 0)

    def test_constructor_dataframe(self):
        dense = self.frame.to_dense()
        sp = SparseDataFrame(dense)
        assert_sp_frame_equal(sp, self.frame)

    def test_array_interface(self):
        res = np.sqrt(self.frame)
        dres = np.sqrt(self.frame.to_dense())
        assert_frame_equal(res.to_dense(), dres)

    def test_pickle(self):
        def _test_roundtrip(frame):
            pickled = pickle.dumps(frame, protocol=pickle.HIGHEST_PROTOCOL)
            unpickled = pickle.loads(pickled)
            assert_sp_frame_equal(frame, unpickled)

        _test_roundtrip(SparseDataFrame())
        self._check_all(_test_roundtrip)

    def test_dense_to_sparse(self):
        df = DataFrame({"A": [nan, nan, nan, 1, 2], "B": [1, 2, nan, nan, nan]})
        sdf = df.to_sparse()
        self.assert_(isinstance(sdf, SparseDataFrame))
        self.assert_(np.isnan(sdf.default_fill_value))
        self.assert_(isinstance(sdf["A"].sp_index, BlockIndex))
        tm.assert_frame_equal(sdf.to_dense(), df)

        sdf = df.to_sparse(kind="integer")
        self.assert_(isinstance(sdf["A"].sp_index, IntIndex))

        df = DataFrame({"A": [0, 0, 0, 1, 2], "B": [1, 2, 0, 0, 0]}, dtype=float)
        sdf = df.to_sparse(fill_value=0)
        self.assertEquals(sdf.default_fill_value, 0)
        tm.assert_frame_equal(sdf.to_dense(), df)
开发者ID:klausz,项目名称:pandas,代码行数:70,代码来源:test_sparse.py


注:本文中的pandas.sparse.api.SparseDataFrame.to_dense方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。